<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"> <html> <head> <title>HNSKY help file</title> <meta content="text/html; charset=UTF-16LE" http-equiv="content-type"> <meta name="HNSKY" content="Help file of the Hallo Northern Sky program "> <style type="text/css"> body {width:95%; margin: 0px auto 0px auto; position: relative; min-width:800px; max-width: 1440px;} body {text-align: justify; font-family: sans-serif ; font-size: 11pt;} body {color: #F0F0D0;} body {background-color: #202025;} body {background-image: url(background.png); background-repeat: no-repeat; background-position: center center; background-attachment: fixed; background-size: cover; -moz-background-size: cover; -o-background-size: cover;} td {text-align: justify; font-size: 11pt;} a:link {text-decoration:none;} a:link {color: #FFA500;} a:visited {color: #FFD500;} a:active {color: #FF0000;} a:hover {background-color: #405070;} </style> </head> <body> <a name="index"></a><br> <img src="hnsky.png" style="float: left; margin-right: 12pt; max-width: 49%;"> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<big><big><b>HNSKY version 3.3.2</b></big></big><br> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;<small><b>2017, April 16</b></small><br> <br> <br> <br> <a href="#introduction">Introduction</a><br> <a href="#settings_tab1">Getting started</a><br> <br> <b><big>Program operation</big></b><br> <a href="#searching">Searching for objects</a><br> <a href="#object_menu">Object menu</a><br> <a href="#goto_menu">Go to menu</a><br> <a href="#keys">Mouse and keyboard control, Pop-up menu</a><br> <a href="#settings_tab2">Settings, tab settings</a><br> <a href="#settings_tab3">Settings, tab colours, font size</a><br> <a href="#view">Sidereal or terrestrial view</a><br> <a href="#animation">Animation of planetary objects</a><br> <a href="#telescope">Telescope control</a><br> <a href="#projection">Projection method </a><br> <a href="#saveload">Saving and loading program status</a><br> <a href="#observations">Deep sky observations help file</a><br> <a href="#star_catalogues">Star databases and catalogues</a><br> <a href="#suppl_edit">Supplement edit menu with logbook capabilities</a><br> <a href="https://www.youtube.com/channel/UC31VsnorldNC7pJMUL0uniw">Some online demo videos</a><br> <br> <b><big>Additional information</big></b><br> <a href="#requirements">Files required and optional</a><br> <a href="#nonenglish">Non-English versions</a><br> <a href="#instruments">Instruments and found markers</a><br> <a href="#printing">Printing</a><br> <a href="#cross">Cross-hair and CCD measuring frame, found object markers</a><br> <a href="#dss">Deep sky images from DSS and others</a><br> <a href="#eclipse">Eclipses of Sun and Moon</a><br> <a href="#jovian">Moons of the outer planets</a><br> <a href="#comet">Comets and Asteroids orbital elements</a><br> <a href="#shortcuts">Personal menu shortcuts</a><br> <a href="#supplements">Supplement files</a><br> <a href="#dde">External control using DDE</a><br> <a href="#units">Units used in the program</a><br> <a href="#database">Format of star, deep sky, comet, asteroid and supplement database files</a><br> <a href="#accuracy">Accuracy of the program</a><br> <a href="#credits">Credits</a><br> <a href="#future">History and future of this program</a><br> <br> <b><big>General astronomy information</big></b><br> <a href="#telescope_view">Field of view and limiting magnitude of telescopes</a><br> <a href="#abbreviations">Abbreviations used for visual description of deep sky objects.</a><br> <a href="#dt_time">Ephemeris or dynamical time</a><br> <a href="#constellations">Constellations short names and positions</a><br> <a href="#sun">Planet and Moon data of our solar system</a><br> <a href="#bayer">Bayer system for assigning Greek letters to stars</a><br> <a href="#glossary">Glossary, technical terms and abbreviations</a><br> <br> <b><big>Download Links</big></b><br> <a href="#jpl_de">Jet Propulsion Laboratory Development Ephemeris</a><br> <a href="#webpages">Web pages of HNSKY and others</a><br> <br> <br> If your a native speaker, your welcome to provide textual corrections. Translations or partial translations are also most welcome. <hr> <a name="introduction"><big><b>Introduction</b></big><br> <br> </a><a href="http://www.hnsky.org/software.htm">"Hallo Northern Sky" or HNSKY</a> is a full feature planetarium program for MS-Windows. Free with 30.000 deep sky objects and star databases up to magnitude 16. Online access to Gaia, UCAC4 en NOMAD star catalogs Access to local <a href="#gsc">GSC 1.2</a> or the <a href="#ucac4">USNO UCAC4</a> catalogs. The Sun, Moon, the planets and their major moons are all displayed with surface features. It maps the position of comets and asteroids with online updating. It comes with hundreds of DSS deep sky images which will blend in at the correct size and orientation. It has a powerful<a href="#animation"> animation menu</a>. and an integrated <a href="#observations">deep sky observations help file</a> and 21 non-English menus. It can control almost any telescope using the <a href="#telescope">ASCOM</a> interface program.<br> <br> Downloading of additional DSS images via the internet is fully integrated. Just select an area and select download. After a few second the DSS image will blend in the HNSKY map at the correct size and orientation.<br> <br> <img src="hns_pop2.png" style="float: left; margin-right: 0pt; max-width: 49%;"> <img src="hns_m20b.png" alt="HNSKY showing M20" style="float: right; margin-right: 0pt; max-width: 49%;"><br clear="all"> <br> The comet or asteroid database can be updated online with just one click. You can also import orbital elements from <a href="#jpl">JPL Horizons</a>.<br> Online database search for objects in the selected area.<br> <br> <a href="#comet">Numerical integration</a> for asteroids to achieve highest accuracy positions years in the future or past. The error is less then 1" after 10 years !!! So a asteroid orbital elements from 10 years ago will after numerical integration allow position calculation within 1" accurate!! So also 10 years in the future.<br> <br> The intention of the program is to familiarise you with the night sky and prepare yourself with a map for a night with your telescope. To help you with this, all deep sky objects are displayed in the correct size and orientation if available.<br> <br> This program is free. Please distribute and enjoy it. Let me now if you liked it. Comments are always very welcome. This program stays Han Kleijn and you may not make money from it. Please distribute with original files only.<br> <br> "Hallo" is the Dutch version of Hello.<br> <br> Overview of the sky in "Azimuthal equidistant projection":<br> <br> <img src="hns_equ1.png" style="margin-right: 8pt; max-width: 49%;"><br> <br> Under the main menu "<b>HELP</b>" the following quick overview is available:<br> <br> <a name="planet_visibility"></a>Visibility of planets:<br> <img style="float: left; margin-right: 8pt; max-width: 49%;" alt="" src="hns_pln1.png"><br> Yellow indicates if the planet is visible. The vertical axis are the next 31 days. The horizontal axis indicates the time from 17:45 hours up to the next morning 6:15 hours in steps of 15 minutes.<br clear="all"> <br> Dark night's (no Moon) are indicated as follows:<br> <img style="float: left; margin-right: 8pt; max-width: 49%;" src="hns_drk1.png"><br> The vertical axis are the next 31 days. The horizontal axis indicates the time from 17:45 hours up to the next morning 6:15 hours in steps of 15 minutes.<br> <br> <br clear="all"> <br> Webpage: <a href="http://www.hnsky.org/software.htm">http://www.hnsky.org/software.htm </a><br> <br> <a href="#webpages">Other web pages</a><br> <br> <a href="#index">Back to the index</a> <hr> <a name="settings_tab1"></a><b><big>Getting started</big></b><br> <br> Before the program show the sky correctly, you have first to set your location and time zone correctly<br> <br> <img src="hns_men1.png" style="margin-right: 8pt; float: left; max-width: 49%;"><br> In menu <b>SETTING</b> (main menu <b>FILE</b>, sub menu<b> SETTINGS or CTRL-E</b>) tab<b> Location</b> you will see the following:<br clear="all"> <br> <img src="hns_set1.png" style="margin-right: 8pt; float: left; max-width: 49%;"><br> <b>Location:</b> You will notice a small red circle indicating the position on earth surface. The image on the left is showing the user location (7 degrees east, 50 degrees north in the Netherlands, Note the mouse geographical position will be shown the right bottom corner.<br> <br> <b>Time zone:</b> The vertical yellow line is a help for checking if you have entered the time zone correctly. In the map it is indicating where the Sun is exactly at it's highest point at mid day and at the middle of the night is at 12 PM. So the red circle of your location and the yellow line zone should be close. In other words, the yellow line is indicating the middle of the time zone.<br> <br> For USA en Europa the main time zones are available. If one of these is selected the daylight saving compensation will be automatic following the current definitions.<br> <br> If your time zone is not available select the hourly difference with UTC time. See table below.<br> <br> <b>Daylight savings:</b> In most countries during the summer the clock is set one hour forward. This is called daylight saving or summer time. To correct for this change, put check mark at "DAYLIGHT SAVING" if applicable. If daylight saving is active the map time hour/minutes separator is a dot as "23.00" else time is indicated as "23:00".<br> <br> To save these location settings, select from the pull down menu "<b>FILE</b>" and then "<b>SAVE STATUS</b>". The location settings will be saved in the file DEFAULT.HNS. This settings file is automatically loaded after start-up<br> <br> <b>T</b> is hardly important. <a href="#dt_time">See subject 'ET and UT time'</a> Normally you should keep this one selected.<br clear="all"> <br> <a name="clock"></a><b>Here is a list of some cities in each time zone:</b><br> <br> <table width="450" cellspacing="0" cellpadding="4" border="1"> <tbody> <tr> <td align="center">Time<br> difference<br> with UTC</td> <td align="center">Cities in Zone</td> </tr> <tr> <td>- 11</td> <td>Midway</td> </tr> <tr> <td>- 10</td> <td>Honolulu</td> </tr> <tr> <td>- 09</td> <td>Anchorage</td> </tr> <tr> <td>- 08</td> <td>Los Angeles, San Francisco, Seattle, Las Vegas</td> </tr> <tr> <td>- 07</td> <td>Denver, El Paso</td> </tr> <tr> <td>- 06</td> <td>Chicago, Dallas, Mexico City, Houston</td> </tr> <tr> <td>- 05</td> <td>New York, Washington D.C., Boston, Montreal</td> </tr> <tr> <td>- 04</td> <td>Caracas, Santiago</td> </tr> <tr> <td>- 03</td> <td>Rio de Janeiro, Sao Paulo, Buenos Aires</td> </tr> <tr> <td>- 01</td> <td>Azores</td> </tr> <tr> <td>+ 00</td> <td>London, Greenwich Mean Time, Lisbon</td> </tr> <tr> <td>+ 01</td> <td>Paris, Rome, Madrid, Amsterdam, Berlin</td> </tr> <tr> <td>+ 02</td> <td>Cairo, Athens, Helsinki, Beirut, Jerusalem</td> </tr> <tr> <td>+ 03</td> <td>Moscow, Jeddah, Kuwait, Nairobi</td> </tr> <tr> <td>+ 03:30</td> <td>Tehran, Abadan, Shiraz</td> </tr> <tr> <td>+ 04</td> <td>Dubai, Abu Dhabi</td> </tr> <tr> <td>+ 04:30</td> <td>Kabul</td> </tr> <tr> <td>+ 05</td> <td>Karachi</td> </tr> <tr> <td>+ 05:30</td> <td>Delhi, Bombay, Calcutta, Colombo</td> </tr> <tr> <td>+ 06</td> <td>Dhaka</td> </tr> <tr> <td>+ 06:30</td> <td>Yangon</td> </tr> <tr> <td>+ 07</td> <td>Bangkok, Jakarta, Hanoi</td> </tr> <tr> <td>+ 08</td> <td>Hong Kong, Beijing, Taipei, Singapore, Manila</td> </tr> <tr> <td>+ 09</td> <td>Tokyo, Seoul, Pyongyang</td> </tr> <tr> <td>+ 09:30</td> <td>Adelaide, Darwin</td> </tr> <tr> <td>+ 10</td> <td>Sydney, Guam</td> </tr> <tr> <td>+ 11</td> <td>Noumea, Port vila</td> </tr> <tr> <td>+ 12</td> <td>Wellington, Auckland</td> </tr> </tbody> </table> <br> Now you ready are with the setup. The only other thing to do is to set the time. You could set "follow the system time" and HNSKY will use the time of the computer for creating the sky map. However if you preparing for an observation night, maybe it is better to set it at midnight. The following options are available:<br> <br> <img src="hns_hns1.png" style="margin-right: 8pt; float: left; max-width: 49%;"><br> Main pull down menu <b>"DATE" </b> allows following time settings:<br> <br> <br> <b>Follow computer clock.</b> The map is updated regularly at an interval set in <b>"SETTINGS" </b>, <a href="#settings_tab2">TAB SETTINGS</a>.<br> <br> <b>Tonight,</b> the map is made for midnight 12 PM<br> <br> <b>Now,</b> Map is made for current computer time but does not change<br> <br> <b>Enter date time,</b> Enter any time in past or future.<br clear="all"> <br> Starting with version 3.0.2 the main menu is customizable. You can call up this pop-up menu with the right mouse button or by clicking on the triangle button on the right as shown below. Save the settings to make it permanent:<br> <br> <img src="hns_menu.png" style="margin-right: 8pt; float: left; max-width: 49%;"><br clear="all"> <br> <a href="#index">Back to the index</a> <hr> <a name="searching"></a><big><b>Searching for objects</b></big><br> <br> With the SEARCH option, Alt-F, it is possible to search through the entire database. To find deep sky and solar object as NGC104, IC1396, M42 or the Moon, their full name should be entered. To find SAO, PPM and TYCHO stars enter their catalog number only. The text search of Tycho files and other .290 files goes from north to south and could be a bit slow. SAO and PPM and other DAT star files are organized from bright to faint and a text search for bright stars is faster. For each object only one name will be displayed on the map. Preference is given to the Messier name rather then NGC. So a search for object NGC1952 will display M1 on the map.<br> <br> The search menu allows wildcards. If you type a search string such as PAN* and press the button COMETS, it will list all comets complying to this wildcard as 253P/PANSTARRS. Alternatively you could first press the button COMETS, then type the search string PAN* and finally hit Go To button. The combo box will list all comets complying to this wildcard.<br> <br> <a href="#keys">See also subject 'Functional Keys'</a><br> <br> <img style="border: 0px solid ; margin-right: 8pt; max-width: 49%;" src="hns_sear.png"><br> <br> The local databases, including GSC and UCAC4 will allow a full database search. A search in the online UCAC4 or Nomad database will only inside look into the visible area.<br> <br> <a href="#index">Back to the index</a> <hr> <a name="object_menu"></a><big><b>Object menu</b></big><br> <br> <img style="margin-right: 8pt; float: left; max-width: 49%;" src="hns_obj1.png"><br> The top part <b>"Stars"</b> allows the selecting the star database and adjustment of star boldness and the number of stars displayed called density option. The primary star database is used for wide field displays. If selected, the secondary kicks in at high zoom factors. The best selection is TYC for the primary and UCAC4 local for secondary. In some cases in the transition phase the corners could be without stars.<br> <br> The reason for this dual setup is speed. For wide field it is convenient to sort the star database from bright to faint, so the few thousand brightest stars can be quickly accessed. All HNSKY native database are organized in this way. For large catalogues going very deep with many faint stars, the sorting is done on location to allowing quick access for a small area. The result is that it is a rather difficult the extract the few thousand brightest stars up to magnitude 5 from an original UCAC4 catalogue sorted on declination and 9 gigabytes large.<br> <br> The bottom part<b>"Deep sky + solar"</b> allows selection of the deep sky database and two <a href="#supplements">supplements</a> in parallel. For most beginners the "Deep sky level 1" is sufficient. The database can be filtered on magnitude, size and type. At the bottom there are two sliders to adjust the background and brightness of the displayed deep sky images (FITS files) Normally you don't have to adjust them but some deep sky DSS pictures are under-overexposed and need some fine-tuning to get maximum detail.<br clear="all"> <img style="margin-top: 12pt; margin-right: 8pt; float: left; max-width: 49%;" src="hns_obj3.png"><br> <br> The bottom part has a second TAB for three more supplements, the TOAST projection of the whole sky for displaying the milky ways (slow, use with care).<br> <br> This TAB has one special option to filter out near-Earth object (NEO), both asteroids and comets closer then 0.05 a.u. to Earth. This is the only option which can not be saved by purpose.<br clear="all"> <br> <a href="#index">Back to the index</a> <hr> <a name="goto_menu"></a><big><b>Go to menu</b></big><br> <br> <img style="margin-right: 8pt; float: left; max-width: 49%;" src="hns_goto.png"><br> This menu allows to move directly to a position on the map. The North, South, East, West or Zenith buttons move straight to overall view in that direction. You can enter numbers with decimal fractions in all fields including the degrees and hours.<br> <br> On the right bottom you can paste a position from <a href="http://simbad.u-strasbg.fr/simbad/sim-id?Ident=M42">Simbad</a> or any other source. It will accept four or six string positions. All text will be removed. An "S" (=South) will introduce a minus sign. The following two examples will be interpreted correctly:<br> <br> <i>Simbad: Sirius 06 45 08.917 -16 42 58.02</i><br> <i>Orion Nebula s position is Right Ascension: 5h 35.4m; Declination: 5 272 south.</i><br> <br> <a href="#index">Back to the index</a> <hr> <a name="keys"></a><big><b>Mouse and keyboard control, Pop-up menu.</b></big><br> <br> <b>Mouse buttons:</b><br> <br> Left mouse button:<br> 1) Display data of the object near the cursor.<br> 2) If cursor is close to the borders of the window, move left, right, up or down.<br> <br> Right mouse button:<br> This will introduce a mouse pop-up menu with several options. While holding the right button you can also pull a rubber square which will be the area for the following:<br> <br> <img src="hns_pop1.png" style="margin-right: 8pt; float: left; max-width: 49%;"><br> Search for objects in the area selected in Simbad, Hyperleda or Ned or internal. If no area is selected search near mouse position. The Simbad, Hyperleda and Ned will create a search request in the default web browser. The internal search will produce a list in new window. Relevant data could be <span class="comment-copy">copied-pasted. If a planet is within the internal search area, the J2000, mean and apparent positions will be given.<br clear="all"> <br> <img src="hns_pop2.png" style="margin-right: 8pt; float: left; max-width: 49%;"> <br> Download from internet deep sky image defined by the square or near mouse position. HNSKY will store up to 9 images in the <a href="#requirements">Documents directory</a> as download1.fit, download2.fit.... After 9 files it overrides the first to prevent creating too many files. Normal <a href="#dss">DSS</a>or DSS2 images are download as defined in the internet setting in menu <a href="#settings_tab4">SETTINGS</a> tab 4.<br> <br> For wide fields with a height above 3.5 degrees, Skyview provide the <a href="http://skyview.gsfc.nasa.gov/blog/index.php/2009/12/16/mellinger-optical-survey/"> Axel Mellinger</a> low resolution survey. The images are shown at any zoom and stored as downloadM1.fit, downloadM2.fit.... You can select in the internet setting in menu <a href="#settings_tab4">SETTINGS</a> tab 4 an other survey like "HALPHA" or Mellinger colour green (MELL-G) or blue (MELL-B)<br clear="all"> <br> Furthermore the pop-up menu has the following menus:<br> <br> <a href="#lines">Markers and lines</a><br> <a href="#telescope">Telescope</a><br> <br> To centre on an part of the display simply use "<b>CENTRE ON</b>":<br> <br> <img src="hns_pop0.png" style="margin-right: 8pt; float: left; max-width: 49%;"> <br> To centre the map can be done in three other ways.<br> <br> &nbsp;&nbsp;&nbsp;&nbsp;1) Click the mouse wheel as a button,<br> &nbsp;&nbsp;&nbsp;&nbsp;2) Pushing ALT KEY plus RIGHT MOUSE button.<br> &nbsp;&nbsp;&nbsp;&nbsp;3) Click twice with the LEFT mouse button.<br clear="all"> <b><br> Mouse wheel:</b><br> <br> <img src="hns_meas.png" style="margin-right: 8pt; float: left; max-width: 49%;"> <br> Use the mouse wheel zoom in or out. To zoom in on a specific object, pull square box using the mouse while holding the left mouse button down. Use CTRL+Z to return to previous view. The distance and angle are give in the status bar. Clicking the mouse wheel as button will centre the map on that position <br clear="all"> <br> <b>Keyboard:</b><br> <br> Beside the ALT+key options for accessing the pull down menu items, the following hot keys are available:<br> <br> <table width="700" cellspacing="0" cellpadding="4" border="1"> <tbody> <tr> <td align="center"><b>General:</b></td> <td align="center"><b>Command:</b></td> <td align="center"><b>keys</b><br> </td> </tr> <tr> <td rowspan="9"><b>General</b></td> <td>Move left,right, up, down:</td> <td>Arrow keys</td> </tr> <tr> <td>Move slowly left,right...:</td> <td>CTRL+Arrow keys</td> </tr> <tr> <td>Zoom in:</td> <td>CTRL+I or Alt-I or Page Down</td> </tr> <tr> <td>Zoom out:</td> <td>CTRL+O or Alt-O or Page Up</td> </tr> <tr> <td>Zoom in, small step:</td> <td>CTRL+Page Down</td> </tr> <tr> <td>Zoom out, small step:</td> <td>CTRL+Page Up</td> </tr> <tr> <td>Search:</td> <td>CTRL+F or Alt-S</td> </tr> <tr> <td>Reset:</td> <td>-Alt-R</td> </tr> <tr> <td>Objects menu:</td> <td>CTRL+B or Alt-B</td> </tr> <tr> <td rowspan="11"><b>File</b></td> <td>Save Status:</td> <td>CTRL+W</td> </tr> <tr> <td><a href="#saveload">Load</a></td> <td>CTRL+L</td> </tr> <tr> <td><a href="#saveload">Load event</a></td> <td>CTRL+F</td> </tr> <tr> <td>Settings:</td> <td>CTRL+E</td> </tr> <tr> <td>Supplement 1:</td> <td>CTRL+1</td> </tr> <tr> <td>Supplement 2:</td> <td>CTRL+2</td> </tr> <tr> <td>Supplement 3:</td> <td>CTRL+3</td> </tr> <tr> <td>Supplement 4:</td> <td>CTRL+4</td> </tr> <tr> <td>Supplement 5:</td> <td>CTRL+5</td> </tr> <tr> <td>Asteroid data editor:</td> <td>CTRL+8</td> </tr> <tr> <td>Comet data editor:</td> <td>CTRL+9</td> </tr> <tr> <td rowspan="24"><b>Screen</b></td> <td>Move To</td> <td>CTRL+M</td> </tr> <tr> <td>North:</td> <td>shift+N shift !!!</td> </tr> <tr> <td>South:</td> <td>shift+S</td> </tr> <tr> <td>East:</td> <td>shift+E</td> </tr> <tr> <td>West:</td> <td>shift+W</td> </tr> <tr> <td>Zenith:</td> <td>shift+Z</td> </tr> <tr> <td>Flip Horz:</td> <td>CTRL+H</td> </tr> <tr> <td>Flip Vert:</td> <td>CTRL+V</td> </tr> <tr> <td>Grid RA/DEC:</td> <td>CTRL+G</td> </tr> <tr> <td>Grid Alt/Az:</td> <td>CTRL+A</td> </tr> <tr> <td>Constellations:</td> <td>CTRL+K</td> </tr> <tr> <td>Boundaries:</td> <td>CTRL+U</td> </tr> <tr> <td>Animation</td> <td>CTRL+R</td> </tr> <tr> <td>Night Vision:</td> <td>CTRL+N</td> </tr> <tr> <td>Cross hair:</td> <td>CTRL+Alt+H </td> </tr> <tr> <td>Draw solar object tracks:</td> <td>INS</td> </tr> <tr> <td>Undo view:</td> <td>CTRL+Z</td> </tr> <tr> <td>Redo view:</td> <td>SHIFT+CTRL+Z </td> </tr> <tr> <td>Mark current mouse position:</td> <td>HOME</td> </tr> <tr> </tr> <tr> <td><a href="#dde">Allow external DDE:</a></td> <td>CTRL+8</td> </tr> <tr> <td>Connect to ASCOM:</td> <td>CTRL+7</td> </tr> <tr> <td>Copy Window:</td> <td>CTRL+C (as windows copy)</td> </tr> <tr> <td>Print white sky:</td> <td>CTRL+P</td> </tr> <tr> <td rowspan="7"><b>Date</b></td> <td>System Time:</td> <td>CTRL+T</td> </tr> <tr> <td>Now (time&amp;date):</td> <td>F9</td> </tr> <tr> <td>Enter Date Time:</td> <td>CTRL+D</td> </tr> <tr> <td>Step one minute:</td> <td>F3, F4 ("ACTUAL TIME" should be off)</td> </tr> <tr> <td>Step one hour:</td> <td>F5, F6 or +, - key</td> </tr> <tr> <td>Step one day:</td> <td>F7, F8</td> </tr> <tr> <td>Step 23:56:</td> <td>F11,F12 or CTRL and + ,CTRL and - key</td> </tr> <tr> <td><br> </td> <td colspan="2"><i>Step 23:56 hours. This is very useful when monitoring a solar object over a long period while the star field reins stationary.</i></td> </tr> </tbody> </table> <br> <br> <img src="hns_zen1.png" style="margin-right: 8pt; float: left; max-width: 49%;"><br> Some areas in the canvas can be clicked on. If a field is active, the mouse pointer will change to the standard arrow. There is an area at "date" to change the date, "position" to move to an other position. If you want to know when an object is in the zenith, hold the mouse steady at the rise and set times. See below:<br clear="all"> <br> <b>Copy object information in the clipboard.</b><br> <br> <img src="hns_too1.png" style="margin-right: 8pt; float: left; max-width: 49%;"> <br> After an object information is displayed, it can be copied to the clipboard by clicking on the status bar. <a href="#abbreviations">Abbreviations</a> are unconverted from the deep sky database.<br> <br clear="all"> <br> <a href="#index">Back to the index</a> <hr> <a name="settings_tab2"></a><big><b>SETTINGS, tab Settings</b></big><br> <br> <img src="hns_set2.png" style="margin-right: 8pt; float: left; max-width: 49%;"> <br> <b>Location use</b>: This one should be selected for accurate positions of planetary object.<br> <br> <b>Equinox</b>: Select equinox 2000. The equinox 2000 is the common reference frame for maps and this one should normally be selected. The equator rotated by precession is at its position of 2000 jan 1,5. If you use HNSKY to control a telescope, you can either select for the map "mean equinox of date" or keep equinox J2000 selected but the communication for telescope should be in most case "mean equinox of date". HNSKY will read automatically the correct setting from ASCOM communication if provided. Note that if a telescope is correctly polar aligned the mechanical drive will follow this "equinox of date" as the earth rotation does the same. See also <a href="#accuracy">accuracy</a> and <a href="#telescope">telescope settings</a>.<br> <br> <b>Screen</b>: If in main pull down menu <b>DATE</b> is set follow system time, the update interval is set in tab <b>SETTINGS</b>, tab <b>Settings</b>, part Screen. Typical you should set this at 5 minutes. If you select 0 minutes, the actual interval will be 1 second for animation. Planetary objects will now move in real-time with an update frequency of one second. This will create a high CPU load on your computer.<br> <br> <b>Screen mode:</b>This should normally be selected. If selected the sky map is created in memory and displayed instantly.<br> <br> <b>GSC location:</b> Normally on binary version should be selected. Download the GSC_ACT using an FTP program keeping the directory structure intact see <a href="#webpages">webpages</a>. Since it is organized in several directories and thousands of files, using an FTP program such as FileZila is the only option. Note the <a href="#gsc">GSC</a> can be used for small fields only. For background information see <a href="#gsc">GSC</a><br> <br> <b>USNO location:</b><a href="#webpages">webpages</a>. Note the <a href="#ucac4">UCAC4</a> can be used for small fields only. For background information see <a href="#ucac4">UCAC4</a><br> <br> <b>FITS image file settings</b> This is the path to the FITS files of the deep sky and planetary images. The dot in the example represent the "Documents" folder.<br> <br> <a name="settings_jpl_de"></a><b>Jet Propulsion Laboratory Development Ephemeris:</b> For the <a href="#set_time">highest planetary position accuracy</a> download the DE430 or DE431 file. The blue arrow will give the download link or download from <a href="#jpl_de">here</a>. You could place the ephemeris file in the "Documents\hnsky" folder or program folder typically \Program files\hnsky . The small lnxp2000p2000p2050.430 file is covering the years 2000 to 2050. The huge lnxm13000p17000.431 (2.8gbyte) is covering the years -13000 to 16999.<br> <br> If the JPL ephemeris is working correctly, you will see the letters DE in the blue title bar of HNSKY. If not the status bar will show a message "JPL... not found/invalid range". This message could be overwritten depending what you are doing. If the date is outside the valid range, the letters DE will disappear and the same status bar message "JPL... not found/invalid range" will be given.<br> <br> There is a possibility to use two JPL ephemeris files. One small at position 1 with small date range and one with a large range at position 2. Even with the huge DE431 at position 1, the program is quick. The program will first try to use position 1, then position 2 and if no file is found or the date is outside the valid range it will fall back on the internal analytical solution. The internal analytical solution is only accurate between years 1750 and 2250. Only one JPL ephemeris file is sufficient.<br> <br> <b>Documents path</b> indicates where the FITS, supplements en cache files are stored. See <a href="#requirements">requirements</a>. This is normally the "hnsky" folder in the Documents folder. The installer will normally place user files in this folder. If this folder is not available, it will alternatively it will look for the files in the program folder. Note that under Win10 writing in the program folder is not possible and could block downloading DSS images and accessing online star databases unless the permissions of the HNSKY program folder are modified. So it is better to have the "hnsky" folder in the Documents folder.<br clear="all"> <br> <a href="#index">Back to the index</a> <hr> <a name="settings_tab3"></a><big><b>SETTINGS, tab Colors</b></big><br> <br> <img src="hns_set3.png" style="margin-right: 8pt; float: left; max-width: 49%;"> <b>Colors</b>: The grid, constellations, solar and deep sky colors and font size can be set in the menu <b>"SETTINGS"(CTRL+E)</b> of main menu <b>"FILE"</b>.<br> <br> Go to <b>"PAGE"</b> colors and just click with the mouse on the colors to change them.<br> <br> The menu colors as any other window application are defined in your Windows set-up. To change these color settings, select <b>"SCREEN"</b> in your Windows set-up.<br> <br> To prevent blinding and loosing your "night vision", a menu option <b>"NIGHT VISION"</b> is available under the main menu <b>"SCREEN"</b>.<br> <br> Some laptops/computers do not display text in the status bar correctly in night vision mode. A way around is to change in the windows setup, the text color of 3D-objects. (OK button in windows setup, screen color menu.) Change for example the text color from black to blue.<br> <br> All these settings become permanent after selecting <b>"SAVE STATUS"</b> in menu <b>"FILE"</b>.<br clear="all"> <br> <a href="#index">Back to the index</a> <hr> <a name="settings_tab4"></a><big><b>SETTINGS, tab Internet access</b></big><br> <br> <img src="hns_set4.png" style="margin-right: 8pt; float: left; max-width: 49%;"><br> These settings normally don't require any change.<br> <br> The only thing you could change are parameters. You could change DDS2R (Second Deep Sky Survey red) to DSS2B (blue) or DSSR (First survey red). Each provider has a slightly different interface so changing the provider will not work. <br clear="all"> <br> <a href="#index">Back to the index</a> <hr> <a name="settings_tab5"></a><big><b>SETTINGS, tab Update</b></big><br> <br> <img src="hns_set5.png" style="margin-right: 8pt; float: left; max-width: 49%;"><br> From this tab the asteroid and comet database can be quickly updated. Same is possible within the editor.<br> <br> The internet address for the asteroid ephemerides database (<a href="http://www.minorplanetcenter.net/iau/Ephemerides/Soft06.html">The SKY format</a>) contains the current year. HNSKY will update the year in the path automatically based on the computer clock. In the first days of a new year it is possible that the update is not available yet from the <a href="http://www.minorplanetcenter.net/iau/Ephemerides/SoftwareEls.html">minor planet center webpage</a>. Is this the case, modify manually the year to the previous year. Note you can also the <a href="#comet">numerical integration</a> option in the asteroid editor to update the ephemerides data.<br clear="all"> <br> <a href="#index">Back to the index</a> <hr> <a name="settings_tab6"></a><big><b>SETTINGS, tab telescope</b></big><br> <br> <img src="hns_set6.png" style="margin-right: 8pt; float: left; max-width: 49%;"><br> For HNSKY versions compiled with FPC an INDI interface is available both for Linux and Windows.<br clear="all"> <br> <br> <img src="hns_set7.png" style="margin-right: 8pt; float: left; max-width: 49%;"><br> The INDI interface is normally only used in Linux systems not in MS Windows.<br clear="all"> <br> <a href="#index">Back to the index</a> <hr> <a name="lines"></a><big><b>Markers and lines</b></big><br> <br> <img src="hns_pop3.png" style="margin-right: 8pt; float: left; max-width: 49%;"><br> The "MARKERS AND LINES" allows you to draw deep sky outlines or your personal horizon and are stored in supplement 2.<br> <br> Usage:<br> <br> - Click on an existing object to use that name. (optional)<br> - Activate "DRAW LINES (Ra/DEC)"<br> - Click on the outlines of a deep sky object. Each time a line will be drawn.<br> - When finished deactivate "DRAW LINES (Ra/DEC)"<br> - Open supplement 2 and save outline as a .SUP file.<br> - When required last lines can be deleted with "DELETE LAST POINT".<br> <br> Any change is not saved and requires a manual save of supplement 2 !!<br> <br> Editing commands:<br> <br> <b>Line colour change mode:</b> After activating this mode, hit the end point of a line and on every click the colour changes.<br> <br> <b>Insert line mode: </b>After activating this mode, hit the end point of a line and on next click an extra line is inserted at that next point.<br> <br> <b>Remove line mode:</b> After activating this mode, hit the end point of a line and the line is marked as comment with ;$$$ in front.<br> <br> <b>Hide line:</b> After activating this mode, hit the end point of a line and the line command is changed from "line to =-1 to "move to"=-2 or the other way around. Works also for Az/Alt lines.<br> <br> Be aware the the line commands are a series. For example these three commands will draw two lines:<br> 1) "move to point A", 2) "line to point B", 3) "line to point C".<br> <br> If you remove a start point of a constellation e.g. "move to point A", A new line from somewhere will pop-up to "point B". You have to apply the hide line on "point B" to make it a "move to point B" to remove this line.<br clear="all"> <br> <a href="#index">Back to the index</a> <hr> <a name="view"></a><big><b>Sidereal or terrestrial view</b></big><br> <br> <img src="hns_men4.png" style="margin-right: 8pt; float: left; max-width: 49%;"><br> 1) <b>Sidereal view off (=Terrestrial view</b>:<br> - Stars rotate around celestial north (Polaris) as time goes by.<br> - Altitude and horizon grid are fixed as time goes by.<br> - RA/DEC grid follows stars and rotates around the celestial north as time goes by.<br> - In the short term solar objects are going around similar as stars.<br> <br> Terrestrial view is what you see if you just look to the sky and is caused by the rotation of the earth.<br> <br> 2) <b>Sidereal view on</b>:<br> - Stars are fixed on the map as time goes by<br> - Altitude and horizon grid rotate as time goes by.<br> - RA/DEC grid is fixed.<br> - Solar objects are moving slowly on the fixed map.<br> <br> Sidereal view is what you see through the telescope while having the sidereal drive on. The so called diurnal motion of stars is off.<br> <br> 3) In the third option is to follow planetary object in the <a href="#animation">Animation Menu</a>.<br clear="all"> <br> <a href="#index">Back to the index</a> <hr> <a name="animation"></a><big><b>Animation of planetary objects</b></big><br> <br> <img src="hns_sim1.png" style="margin-right: 8pt; float: left; max-width: 49%;"><br> To activate this menu, select via menu "<b>SCREEN</b>", "<b>ANIMATION</b>" (Ctrl+R). You could activate and use the animation button in the menu.<br> <br> The animation menu handles three topics:<br> <br> 1) <b>Object to follow:</b> Follow a planetary object or the stars (<a href="#view">sidereal</a>) or nothing (<a href="#view">terrestrial view</a>) while time changes.<br> <br> 2) <b>Time step:</b> Change the time in a single or many steps. The many steps or animation are started with the "&lt;&lt;" or "&gt;&gt;" button. If tracks is activated the planets make a track for every step. The forward animation "&gt;&gt;" can be also started with key "INS" (or with menu "SCREEN", "INSTRUMENTS", "DRAW SOLAR OBJECTS")<br> <br> 3) <b>Find an <a href="#eclipse">eclipse</a> or occultation:</b> This will show for your location the next or previous eclipses or occultation s. For the lunar option, all planets and the bright star Aldebaran are checked against the Moon position. For the solar option, the position if the Moon, Mercury and Venus are checked against the Sun position. The date and time show are just for the start of the phenomena.<br> <br> The solar combo box list list will be filled with up to 10 object names where you click on.<br> <br> To make animated movies, you should use an additional screen recorder program.<br> if you want to make a movie of Jupiter and its moons do the following:<br> <br> &nbsp;&nbsp;&nbsp;&nbsp;1) Lock on Jupiter by typing or clicking on Jupiter and activated option "Solar".<br> &nbsp;&nbsp;&nbsp;&nbsp;2) Set the date to the beginning of the event.<br> &nbsp;&nbsp;&nbsp;&nbsp;3) Select a small step size e.g. 1 minute and duration of 500 steps.<br> &nbsp;&nbsp;&nbsp;&nbsp;4) Hit the "&gt;&gt;" or key "INS" to animate.<br> <br> It could be beneficial the orientate the top of the MAP to the North by menu "<b>SCREEN</b>", "<b>NORTH ALWAYS UP</b>" (Ctrl+Alt+N)<br clear="all"> <br> <a href="hnsky.htm#index">Back to the index</a> <hr> <a name="telescope"></a><big><b>Telescope control</b></big><br> <br> <img src="hns_pop4.png" style="margin-right: 8pt; float: left; max-width: 49%;"> <img src="hns_asc1.png" style="margin-right: 0pt; float: right; max-width: 49%;"><br clear="all"> <br> HNSKY can work together with ASCOM, a free third party telescope interface. ASCOM has drivers for almost any telescope. First you have to download and install the ASCOM program from <a href="http://ascom-standards.org">http://ascom-standards.org</a><br> <br> As soon you activate the ASCOM interface by the right mouse button pop-up menu or CTRL+7, the ASCOM window will pop-up. This window will allow telescope selection. For testing purposes you could select the ASCOM telescope simulator. Please select "Telescope simulator for .NET" rather then the older "Simulator".<br> <br> <b><u>Equinox</u></b>: The telescope position will become visible as a cross. For maximum accuracy, the telescope and HNSKY should communicate in the same coordinate system. See menu <a href="#settings_tab2">SETTINGS (CTRL+E)</a>, setting EQUINOX, TELESCOPE. Most controlled telescopes communicate in "mean equinox of date" coordinates. HNSKY normally sets this automatically by reading from the telescope the equinox used using the ASCOM protocol. In this case you will not be able to change the telescope equinox and the correct equinox for communication will be used. Depending on the indication in your telescope you could select for the map either "mean equinox of date" or J2000 till they indicate the same. See menu <a href="#settings_tab2">SETTINGS (CTRL+E)</a>.<br> <br> Note that if a telescope is correctly polar aligned, the mechanical drive will follow this "equinox of date" as the earth rotation does the same. For this reason it is convenient to communicate in "mean equinox of date" coordinates rather then do a conversion in the telescope to a different epoch.<br> <br> The telescope position is indicated in the top caption of the HNSKY window.<br> <br> Note: The ASCOM simulator allows setting equatorial system communicated for testing purposes. HNSKY will follow.<br> <br> The telescope pop-up menu has the following commands:<br> <br> <b>Telescope to here</b>, moves telescope to mouse position<br> <br> <b>Sync to mouse position</b>, matches the telescope's coordinates to the mouse position.<br> <br> <b>Abort slew</b>, Stops a slew in progress.<br> <br> <b>Follow solar object</b>, let telescope follow object on canvas refresh. Object selection by mouse click. To enable this function switch on "follow time" in the pull down menu and "frequency of screen update" in menu SETTINGS, tab SETTINGS to one minute.<br> <br> If the "frequency of screen update" is set to zero the interval will be not zero minutes but one second. This could be used to track a comet, Moon or any other solar object on it's calculated track!!. HNSKY will send every second and new calculated position to the telescope. If the telescope mount has an accurate polar alignment, this could be used for a long time exposure of a comet without the need for stacking. This could be called <u>MATH GUIDING</u>. To reduce the computer load it could be beneficial to switch of star and deep sky database.<br> <br> A better solution is to guide on a nearby star with a program like PHD2 and set the comet diurnal motion offset in PHD2. HNSKY will give the velocities of comets and asteroids in arc sec/hour in the status bar which could be entered directly in PHD2 for that purpose.<br> <br> <b>Track telescope</b>, Map will follow telescope.<br> <br> <b>Connect to telescope</b>, connect via ASCOM driver to the telescope.<br clear="all"> <br> <a href="#index">Back to the index</a> <hr> <a name="projection"></a><big><b>Projection methods.</b></big><br> <br> <b>Azimuthal equidistant projection.</b> For a better over all view of the sky, the "azimuthal equidistant projection" is available. This projection method allows very wide views up to almost to 360 degrees. The radial distances and direction measured from the centre of the map are correct but the disadvantage is a distortion for large fields of view.<br> <br> You could select a RA/DEC or Alt/Az grid for orientation. The horizon is shown as a double thick line.<br> <br> <img style="margin-right: 8pt; float: left; max-width: 49%;" src="hns_equ1.png"> <img style="float: right; max-width: 49%;" src="hns_equ2.png"><br clear="all"> <br> <b>Orthographic or spherical projection method</b>. The sky is projected on a sphere and in the middle of this sphere lies the Earth. You are observing from outside this sphere with the corrected left and right orientation. This projection method allows wide views almost to 180 degrees. Disadvantage near the edge there is a distortion.<br> <br> <img style="margin-right: 8pt; float: left; max-width: 49%;" src="hns_ort1.png"> <img style="margin-right: 0pt; float: right; max-width: 49%;" src="hns_ort2.png"><br clear="all"> <br> At high zoom factors, both projections produce identical maps.<br> <br> <a href="#saveload">See also subject 'Saving and loading program status'</a><br> <br> <a href="#index">Back to the index</a> <hr> <a name="printing"></a><big><b>Print screen.</b></big><br> <br> Printing. The printing routine will rebuild and adapt the screen view to the printer resolution. Laser printers will produce sharp and good quality prints. The size of the window and monitor resolution are irrelevant.<br> <br> From version 3.2.2b the size of the printed stars is no longer adapted to the DPI resolution of the printer. A low resolution of of 72 or 144 DPI will give the correct star size (a few pixels) for printing on paper. If you select 1200 DPI you will get much smaller stars (still a few pixels), more intended for zoom-able digital maps. You could use this for printing to PDF<br> <br> The are two print options: Black stars on a white background or inverse white stars on a black background. If the print option "white background" is selected, the intensity of colors will be adopted accordingly. For example, a very bright yellow Moon in a black sky will be adapted to a white sky as very dark yellow Moon. Identical as white stars become black on a white background.<br> <br> Another option is to copy the screen contains to the windows clipboard using CTRL+C or the menu option "COPY WINDOW TO CLIPBOARD" in the main menu "SCREEN". Then paste it (CTRL V) in your favourite graphic program for further processing as saving or printing. With this option the resolution is depending on the original HNSKY window size.<br> <br> A third option is to use the standard Window feature to copy the complete window in the windows clipboard by using the ALT-PRINT SCREEN keys. This will capture the complete window including menu bar. Then paste it (CTRL+V) in your favourite drawing program.<br> <br> <a href="#index">Back to the index</a> <hr> <a name="observations"></a><big><b>Deep sky observations help file.</b></big><br> <br> <img src="hns_obsv.png" style="margin-right: 8pt; float: left; max-width: 49%;"> <br> Deep sky observations help file for use with the HNSKY planetarium program. It is a compilation of more then 10.000 visual observations by Steve Gottlieb, Steve Coe and Tom Lorenzin. In HNSKY after you found an object or clicked on it, just hit the F2 button and the CHM file will display the available observations of that object. Rather then F2, you can go the main menu HELP and select the second menu indicating the last object found. Or just look around in the index of the deepsky.chm file.<br clear="all"> <br> <a href="#index">Back to the index</a> <hr> <a name="star_catalogues"></a><big><b>Star databases and catalogues.</b></big><br> <br> Here an overview of the available star database and accessible catalogues:<br> <br> <b>Star databases:</b><br> <br> <table cellspacing="0" cellpadding="4" border="1"> <tbody> <tr> <td rowspan="7" align="center"><b>Local star<br> databases</b></td> <td align="center"><b>Name</b></td> <td align="center"><b>Abbreviation</b></td> <td align="center"><b>Magnitude limit</b></td> <td align="center"><b>Type</b></td> <td align="center"><b>Size</b></td> <td align="center"><b>Maximum<br> field<br> in HNSKY</b></td> <td align="center"><b>Proper motion</b></td> <td align="center"><b>Description and download link</b></td> </tr> <tr> <td>TYC++<br> </td> <td>TYC<br> </td> <td>12.5<br> </td> <td valign="top">Local files, native 290-10 format<br> </td> <td valign="top">50 MB<br> </td> <td valign="top">360</td> <td valign="top">No, epoch<br> 2017</td> <td valign="top">Native HNSKY star database up to magnitude 12.5 containing 4.7 million stars. compilation from TYCHO-2 UCAC4. Included with the program and installed.<br> </td> </tr> <tr> <td>TUC<br> </td> <td>TUC<br> </td> <td>15<br> </td> <td valign="top">Local files, native 290-9 format</td> <td valign="top">206 MB RAR<br> </td> <td valign="top">360</td> <td valign="top">No, epoch<br> 2017</td> <td valign="top"><a href="http://www.poyntsource.com/hnsky/tuc_star_database_mag15.rar">Native HNSKY database up to magnitude 15</a> containing 39 million stars. Compilation from TYCHO-2 and UCAC4. Compressed in a RAR archive the size is 192 mbytes. Contains the Tycho and UCAC star labels/designation. Unpack in the program directory, typically c:\program files\hnsky. </td> </tr> <tr> <td>U16<br> </td> <td>U16<br> </td> <td>16<br> </td> <td valign="top">Local files, native 290-5 format</td> <td valign="top">419 MB RAR</td> <td valign="top">360</td> <td valign="top">No, epoch<br> 2017</td> <td valign="top"><a href="http://www.poyntsource.com/hnsky/u16_star_database_mag16.rar">Native HNSKY database up to magnitude 16</a>&nbsp; containing 113 million stars. A compilation of UCAC4 and Tycho-2. RAR file of 437 mbytes). No Tycho-2 or UCAC identifiers/<span class="comment-copy">designations</span> are available due to small 5 byte record size. Instead an IAU style designation based on the position is used. Unpack in the program directory, typically c:\program files\hnsky </td> </tr> <tr> <td>GAIA<br> </td> <td>G17<br> </td> <td>17<br> </td> <td valign="top">Local files, native 290-5 format </td> <td valign="top">647 MB </td> <td valign="top">360 </td> <td valign="top">No, epoch<br> 2017 </td> <td valign="top"><a href="http://www.poyntsource.com/hnsky/g17_star_database_mag17.rar">Native HNSKY database up to magnitude 17</a> containing 164 million stars. Note that Gaia DR1 is missing some stars so is less suitable for star maps.&nbsp; Unpack in the program directory, typically c:\program files\hnsky </td> </tr> <tr> <td>UCAC4<br> </td> <td>UC4<br> </td> <td>16<br> </td> <td valign="top">Local files, external USNO<br> format<br> </td> <td valign="top">8.4 GB<br> </td> <td valign="top">2.6x1.3 </td> <td valign="top">Yes<br> </td> <td valign="top">UCAC4: You can download the 113 million stars, 8.5 Gbytes large <a href="http://www.usno.navy.mil/USNO/astrometry/optical-IR-prod/ucac">USNO UCAC4</a> from <a href="ftp://cdsarc.u-strasbg.fr/cats/I/322A/UCAC4/"> ftp://cdsarc.u-strasbg.fr/cats/I/322A/UCAC4/</a> HNSKY can access this catalog directly. Download Z001 to Z900 from the U4b directory and add to the same directory file u4index.unf from U4i. This UCAC4 and Nomad are the catalogues where HNSKY will use proper motion for maximum accuracy. See HNSKY <a href="http://www.hnsky.org/hns_ucac.htm">UCAC screenshots</a>. </td> </tr> <tr> <td>GSC 1.2<br> </td> <td>GSC<br> </td> <td>15<br> </td> <td valign="top">Local files, external format<br> </td> <td valign="top">303 MB<br> </td> <td valign="top">16x14 </td> <td valign="top">No, epoch 1982 &amp; 1975<br> </td> <td valign="top">Obsolete: GSC, HST Guide Star Catalog: The <a href="ftp://cdsarc.u-strasbg.fr/cats/I/255/GSC_ACT/">GSC_ACT</a> or (catalog 255) <a href="ftp://cdsarc.u-strasbg.fr/cats/I/254/GSC/">GSC 1.2</a> (catalog 254) of 15 million stars to about magnitude 15 isavailable at CDS in the compact binary format (303 MB).<br> <br> Alternatively download the older <a href="ftp://cdsarc.u-strasbg.fr/cats/I/220/">GSC 1.1 / </a> <a href="http://vizier.china-vo.org/ftp/cats/I/220/GSC/">GSC 1.1</a> (catalog 220) in the compact binary format (303 MB)<br> </td> </tr> <tr> <td rowspan="5" align="center"><b>Online catalogues</b></td> <td align="center"><b>Name</b><br> </td> <td align="center"><b>Abbreviation</b></td> <td align="center"><b>Magnitude limit</b></td> <td align="center"><b>Type</b><br> </td> <td align="center"><b>Size</b></td> <td align="center"><b>Maximum<br> field<br> in HNSKY</b></td> <td align="center"><b>Proper motion</b></td> <td align="center"><b>Description</b></td> </tr> <tr> <td>UCAC4<br> </td> <td>UC4<br> </td> <td>16<br> </td> <td valign="top">online<br> </td> <td valign="top">-<br> </td> <td valign="top">2.6x1.3 </td> <td valign="top">Yes<br> </td> <td valign="top">The USNO UCAC4 includes positions, proper motions and magnitudes for 113 million objects</td> </tr> <tr> <td>Gaia<br> </td> <td>G<br> </td> <td>21<br> </td> <td valign="top">online<br> </td> <td valign="top">-<br> </td> <td valign="top">1.4x0.8</td> <td valign="top">Yes<br> </td> <td valign="top">Gaia DR1<br> </td> </tr> <tr> <td>Nomad<br> </td> <td>N<br> </td> <td>21<br> </td> <td valign="top">online<br> </td> <td valign="top">-<br> </td> <td valign="top">1.4x0.8</td> <td valign="top">Yes<br> </td> <td valign="top">NOMAD is merged catalog compiled by the USNO, with positions and magnitudes for 1.1 billion stars from several source catalogs, including Hipparcos, Tycho-2, UCAC 2, and USNO-B 1.0 </td> </tr> <tr> <td>URAT</td> <td>U<br> </td> <td>18.5<br> </td> <td valign="top">online<br> </td> <td valign="top">-<br> </td> <td valign="top">1.4x0.8</td> <td valign="top">Yes<br> </td> <td valign="top">By USNO, northern sky only, extends down to Declination -15.228 million objects</td> </tr> </tbody> </table> <br> <a href="#index">Back to the index</a><br> <br> </span><span class="comment-copy"> <hr> <a name="suppl_edit"></a><big><b>Supplement edit menu with logbook capabilities.</b></big><br> <br> The </span><span class="comment-copy"><a href="file:///C:/hnsky.code/help/uk/hnsky.htm#supplements">supplements</a> can be freely modified in the main editor.&nbsp; For convenience HNSKY provides and additional edit menu to access a single entry:<br> <br> <img src="hns_suppl_edit.png" alt="" width="739" height="502"><br> <br> After an object/entry of a supplement is found, it is possible to edit the entry by moving&amp;click the mouse in the info area at the left top of the screen. In the field "type" additional info as a log could be entered. Select "Save suppl" to make the change permanent. This works only for supplements not for the database(s).<br> <br> <b><br> New entry:</b><br> <br> </span><span class="comment-copy"><span class="comment-copy">The menu-shortcut "HOME" key or via popup menu <a href="file:///C:/hnsky.code/help/uk/hnsky.htm#lines">"Markers and lines, "Add object"</a>, will add a marker to the second <a href="file:///C:/hnsky.code/help/uk/hnsky.htm#supplements">supplement</a>. In the supplement a line will be added with the mouse position, supplement line number and date.&nbsp;</span></span> You could use the above menu to add an observation in the field "type".&nbsp; This marker &amp; observations are only permanent after saving the supplement.&nbsp; &nbsp; <br> <br> In the supplement the entry "_56" with the observation could look as follows:<br> <span class="comment-copy"> <pre><font size="3"> 1.559949,,, 30.381647,,,,_56/2017-08-06 ,Log/Seen with 8 inch telescope. Bright star or blob ?,-99</font></pre> </span><br> <span class="comment-copy"><span class="comment-copy"></span></span><span class="comment-copy"><span class="comment-copy"> <a href="file:///C:/hnsky.code/help/uk/hnsky.htm#index">Back to the index</a></span></span><span class="comment-copy"> <br> <br> <hr> </span><span class="comment-copy"><big><b>External control using DDE.</b></big><br> <br> HNSKY provides the RA/DEC position of the object found through Dynamic Data Exchange (DDE). If you have a computer-controlled telescope, a suitable application can use the telescope aiming information provided by HNSKY. One could centre on an object in HNSKY and at the same moment point the telescope to that location in the sky. Additional the telescope cursor of HNSKY will show the actual telescope position.<br> <br> A Delphi source and program and also an Excel file HNSKY.XLS are provided to demonstrate this reading and poking. Excel can read HNSKY DDE values by entering =hnsky|output!target or hnsky|output!telescope. Values can be sent to HNSKY (poking) by a simple visual basic macro routine inside Excel. See Excel example file.<br> <br> HNSKY is setup as a "DDE server". The other application should be set up as a "DDE client". HNSKY is the DDE server "HNSKY" with DDE topic "output" and three server items "target", "telescope" and "center". "target" is used to provide the HNSKY object RA/DEC position to other program such as LX200.EXE, HNS_REAL.EXE or Excel. It contains a string with RA and DEC in radians separated by a comma. Example: 3.141593,-1.570796. Size "1.6,+1.6" a total 18 characters. The client can poke a telescope position back (RA/DEC in radians, separated by a comma) to item "telescope". In HNSKY the telescope position is indicated as a yellow cross. If this cross lies outside the view HNSKY will center on this position. The client can also center HNSKY using the item "center". After a poke to center, HNSKY will center to that position.<br> <br> <a href="#index">Back to the index</a> <hr> <a name="spectral"></a><big><b>Spectral types of stars.</b></big><br> <br> The spectral types of stars are defined with two characters. The first defines the main spectral type as follows:<br> <br> <table cellspacing="0" cellpadding="4" border="1"> <tbody font=""> <tr> <th>Class letter<br> </th> <th>Temperature</th> <th>Conventional color description</th> <th>Actual apparent color</th> </tr> <tr style="background: rgb(155, 176, 255) none repeat scroll 0% 50%; -moz-background-clip: initial; -moz-background-origin: initial; -moz-background-inline-policy: initial;"> <th style="background: rgb(155, 176, 255) none repeat scroll 0% 50%; -moz-background-clip: initial; -moz-background-origin: initial; -moz-background-inline-policy: initial;"><font color="black">O<br> </font></th> <td><font color="black">e" 30,000 K</font></td> <td style="background: rgb(157, 180, 255) none repeat scroll 0% 50%; -moz-background-clip: initial; -moz-background-origin: initial; -moz-background-inline-policy: initial;"><font color="black">blue</font></td> <td><font color="black">blue</font></td> </tr> <tr style="background: rgb(170, 191, 255) none repeat scroll 0% 50%; -moz-background-clip: initial; -moz-background-origin: initial; -moz-background-inline-policy: initial;"> <th style="background: rgb(170, 191, 255) none repeat scroll 0% 50%; -moz-background-clip: initial; -moz-background-origin: initial; -moz-background-inline-policy: initial;"><font color="black">B<br> </font></th> <td><font color="black">10,000 30,000 K</font></td> <td style="background: rgb(187, 204, 255) none repeat scroll 0% 50%; -moz-background-clip: initial; -moz-background-origin: initial; -moz-background-inline-policy: initial;"><font color="black">blue white</font></td> <td><font color="black">deep blue white</font></td> </tr> <tr style="background: rgb(202, 216, 255) none repeat scroll 0% 50%; -moz-background-clip: initial; -moz-background-origin: initial; -moz-background-inline-policy: initial;"> <th style="background: rgb(202, 216, 255) none repeat scroll 0% 50%; -moz-background-clip: initial; -moz-background-origin: initial; -moz-background-inline-policy: initial;"><font color="black">A<br> </font></th> <td><font color="black">7,500 10,000 K</font></td> <td style="background: rgb(251, 248, 255) none repeat scroll 0% 50%; -moz-background-clip: initial; -moz-background-origin: initial; -moz-background-inline-policy: initial;"><font color="black">white</font></td> <td><font color="black">blue white</font></td> </tr> <tr style="background: rgb(251, 248, 255) none repeat scroll 0% 50%; -moz-background-clip: initial; -moz-background-origin: initial; -moz-background-inline-policy: initial;"> <th style="background: rgb(251, 248, 255) none repeat scroll 0% 50%; -moz-background-clip: initial; -moz-background-origin: initial; -moz-background-inline-policy: initial;"><font color="black">F<br> </font></th> <td><font color="black">6,000 7,500 K</font></td> <td style="background: rgb(255, 255, 237) none repeat scroll 0% 50%; -moz-background-clip: initial; -moz-background-origin: initial; -moz-background-inline-policy: initial;"><font color="black">yellow white</font></td> <td><font color="black">white</font></td> </tr> <tr style="background: rgb(255, 244, 232) none repeat scroll 0% 50%; -moz-background-clip: initial; -moz-background-origin: initial; -moz-background-inline-policy: initial;"> <th style="background: rgb(255, 244, 232) none repeat scroll 0% 50%; -moz-background-clip: initial; -moz-background-origin: initial; -moz-background-inline-policy: initial;"><font color="black">G<br> </font></th> <td><font color="black">5,200 6,000 K</font></td> <td style="background: rgb(255, 255, 0) none repeat scroll 0% 50%; -moz-background-clip: initial; -moz-background-origin: initial; -moz-background-inline-policy: initial;"><font color="black">yellow</font></td> <td><font color="black">yellowish white</font></td> </tr> <tr style="background: rgb(255, 221, 180) none repeat scroll 0% 50%; -moz-background-clip: initial; -moz-background-origin: initial; -moz-background-inline-policy: initial;"> <th style="background: rgb(255, 221, 180) none repeat scroll 0% 50%; -moz-background-clip: initial; -moz-background-origin: initial; -moz-background-inline-policy: initial;"><font color="black">K<br> </font></th> <td><font color="black">3,700 5,200 K</font></td> <td style="background: rgb(255, 152, 51) none repeat scroll 0% 50%; -moz-background-clip: initial; -moz-background-origin: initial; -moz-background-inline-policy: initial;"><font color="black">orange</font></td> <td><font color="black">pale yellow orange</font></td> </tr> <tr style="background: rgb(255, 189, 111) none repeat scroll 0% 50%; -moz-background-clip: initial; -moz-background-origin: initial; -moz-background-inline-policy: initial;"> <th style="background: rgb(255, 189, 111) none repeat scroll 0% 50%; -moz-background-clip: initial; -moz-background-origin: initial; -moz-background-inline-policy: initial;"><font color="black">M<br> </font></th> <td><font color="black">2,400 3,700 K</font></td> <td style="background: rgb(255, 0, 0) none repeat scroll 0% 50%; -moz-background-clip: initial; -moz-background-origin: initial; -moz-background-inline-policy: initial; color: rgb(255, 255, 255);"><font color="black">red</font></td> <td><font color="black">light orange red</font></td> </tr> </tbody> </table> <br> The main types grade are subdivided decimally as: A0, A1, A2, A3, A4, A5, A6, A7, A8, A9, F0, ....<br> There are also some special spectral types as R, N, S, C for the carbon stars, W for the Wolf-Rayet stars and Q for novae<br> <br> For more information, <a href="https://en.wikipedia.org/?title=Stellar_classification">https://en.wikipedia.org/?title=Stellar_classification</a><br> <br> <a href="#index">Back to the index</a> <hr> <a name="sac"></a><big><b>The Saguaro Astronomy Club or SAC deep sky database.</b></big><br> <br> The Saguaro Astronomy Club or SAC deep sky database contains as good as all deep sky objects visible in amateur telescopes.<br> The SAC compilation of data was begun in an effort to provide a comprehensive observing list for use at the telescope. Their data is released for private use by anyone who wishes to use this database.<br> Please do not sell this database in any form. The database in ASCII format can be download from their <a href="#webpages">web pages</a>.<br> The HNSKY database is a compilation of the SAC DEEP SKY DATABASE VERSION 8.1 and <a href="#credits">Wolfgang Steinicke</a> NGC/IC database.<br> <br> <a href="#index">Back to the index</a> <hr> <a name="sao"></a><big><b>The "Smithsonian Astrophysical Observatory Star Catalog" (SAO, SAO Staff 1966).</b></big><br> <br> HNSKY is using the updated and corrected version from May 1991, available from the <a href="#webpages">CDS</a>. This star catalog is complete to magnitude 9.0 but in some areas the limiting magnitude was raised to magnitude 10. The original ASCII format is <a href="#database">converted</a> to the HNSKY format<br> <br> <a href="#index">Back to the index</a> <hr> <a name="ppm"></a><big><b>Catalogue of Positions and Proper Motions (PPM) north, south.</b></big><br> <br> A convenient, dense, and accurate net of astrometric reference stars that represents the new IAU (1976) co-ordinate system on the sky.<br> <br> Compiled by Roeser S., Bastian U.<br> <br> &nbsp;&nbsp;&nbsp;&nbsp;- PPM North Star Catalogue (181731 stars, 1988)<br> &nbsp;&nbsp;&nbsp;&nbsp;- PPM South Star Catalogue (197179 stars, 1992)<br> <br> Since its appearance in 1966, the SAO Catalogue (SAO, 1966) has been the primary source for stellar positions and proper motions. Typical values for the rms errors are 1 arc sec in the positions at epoch 1990, and 1.5 arc sec/century in the proper motions. The corresponding figures for the AGK3 (Heckmann et al., 1975) on the northern hemisphere are 0.45 arc sec and 0.9 arc sec/century. Common to both catalogues is the fact that proper motions area derived from two observational epochs only. Both catalogues are nominally on the B1950/FK4 co-ordinate system.<br> <br> The PPM Star Catalogue (Roeser and Bastian, 1991, Bastian et al., 1993; for a short description see Roeser and Bastian, 1993) effectively replaced these catalogues by providing more precise astrometric data for more stars on the J2000/FK5 co-ordinate system. Compared to the SAO Catalogue the improvement in precision is about a factor of 3 on the northern and a factor of 6 to 10 on the southern hemisphere. In addition, the number of stars is increased by about 50 percent. Typical values for the rms errors on the northern hemisphere are 0.27 arc sec in the positions at epoch 1990, and 0.42 arc sec/century in the proper motions. On the southern hemisphere PPM is much better, the corresponding figures being 0.11 arc sec and 0.30 arc sec/century. The PPM catalogues (ftp://cdsarc.u-strasbg.fr/cats/I/146, ftp://cdsarc.u-strasbg.fr/cats/I/193) are available in ASCII format from the <a href="#webpages">Centre de Donnes astronomiques de Strasbourg</a><br> <br> Note: These ASCII catalogues can't be accessed by HNSKY directly conversion. Converted version is already available!<br> <br> <a href="#index">Back to the index</a> <hr> <a name="ppmsup"></a><big><b>Catalogue of Positions and Proper Motions (PPM) supplements.</b></big><br> <br> ==The 90000 Stars <a href="#supplements">supplement</a> to the PPM Star Catalogue (89676 stars,1994)==<br> <br> The improvement over the SAO Catalogue was made possible by the advent of new big catalogues of position measurements and by the inclusion of the century-old Astrographic Catalogue (AC) into the derivation of proper motions (for a description of AC see Eichhorn, 1974). But even PPM does not fully exploit the treasure of photographic position measurements available in the astronomical literature of the last 100 years. The Astrographic Catalogue contains roughly four million stars that are not included in PPM. For most of them no precise modern-epoch position measurements exist. Thus it is not yet possible to derive proper motions with PPM quality for all AC stars. But among the 4 million there is a subset of some 100,000 CPC-2 stars that are not included in PPM. These stars constitute the 90,000 Stars supplement to PPM.<br> <br> ==The Bright Stars Supplement (275 stars, 1993)==<br> <br> A number of bright stars is missing from the PPM Star Catalogue, both on the northern and on the southern hemisphere. The Bright Stars Supplement described here makes PPM complete down to V=7.5 mag. For this purpose it lists all missing stars brighter then V=7.6 mag that we could find in published star lists. Their total number is 275. Only 2 of them are brighter then V=3.5 This replaces the December 1992 edition of the Bright Stars Supplement which inadvertently contained 46 duplicates of stars already contained in the main parts of PPM.<br> <br> The PPM supplement catalogues <a href="ftp://cdsarc.u-strasbg.fr/cats/I/208/"> ftp://cdsarc.u-strasbg.fr/cats/I/208/</a> are available in ASCII format from <a href="http://cdsweb.u-strasbg.fr/" onmousedown="returnrwt(this,'','','','1','AFQjCNHYp6Off-W7QiF2weID9iDrCjC7Gg','','0CCEQFjAA','','',event)">Centre de Donnes astronomiques de Strasbourg</a><br> <br> Note: These ASCII catalogs can't be accessed by HNSKY without conversion. Converted version is already available!<br> <br> <a href="#index">Back to the index</a> <hr> <a name="ngc"></a><big><b>New General Catalog (NGC).</b></big><br> <br> Included in the main deep sky database.<br> <br> The popular New General Catalog was compiled by the astronomer J.L.E. Dreyer (1852 - 1926) and contains information on 7,840 objects. Object types include galaxies, nebulae and clusters.<br> <br> Index Catalog (IC)<br> <br> The Index Catalog. By 1908 J.L.E. Dreyer compiled an additional list of 5,386 objects to his NGC catalog.<br> <br> <a href="#index">Back to the index</a> <hr> <a name="gsc"></a><big><b>GSC, Hubble Guide Star Catalog.</b></big><br> <br> <img src="hns_gsc1.png" style="margin-right: 8pt; float: left; max-width: 49%;"> <br> This catalog is obsolete. The <a href="#star_catalogues">native HNSKY U16 star database</a> is more complete and has a modern epoch.<br> <br> Introduction: HNSKY has the ability to use the "Guide Star Catalog" CD-ROM database version 1.1 or 1.2, commonly known as the "GSC". This set of 2 CD-ROMs (one for the northern sky +90 till -7.5 degrees, the other for the southern sky) contains approximately 15 million stars. Limiting magnitudes about 15. The Guide Star Catalog (GSC), which has been constructed to support the operational need of the Hubble Space Telescope (HST) for off-axis guide stars. It is one of the largest star catalog currently in existence. It contains nearly 19 million objects brighter then sixteenth magnitude, of which more then 15 million are classified as stars.<br> <br> Use of GSC in HNSKY:The GSC is divided in regions of about 2.5 degrees. HNSKY can display these regions combined till a practical limit of about 20 degrees. Within this displayed area, the search option will search and objects can be clicked on for more details. Due to the fact that the GSC is not sorted by magnitude, a mouse click could result in the data of a nearby but fainter object. To prevent this, zoom in till there is enough distance between the individual stars. The text search option Alt-S will find any GSC star. It not too many regions are shown it will be faster.<br> <br> The 15 million stars in the GSC are displayed in white. All other 4 million mainly "non-star" objects are displayed in green.<br> <br> The location of the GSC CD's should be set in main menu "FILE", sub menu SETTINGS. In case only one drive is available, set both settings to that drive and swap CD's if required. The CD-north covers +90 till -7.5 degrees declination.<br> <br> The GSC is now considered obsolete for professional use and is superseded by the much larger GSC II, but still very useful.<br> <br> <b>How to get the GSC:</b><br> <br> The Guide Star Catalog (GSC1) was prepared by the Space Telescope Science Institute (ST ScI), (the organisation which operates the Hubble Space Telescope), and was sold through the Astronomical Society of the Pacific (ASP) in San Francisco, California, USA. The GSC is not supplied with HNSKY. Unfortunately the ASP GSC CD's are discontinued. The only source known now is to download them through the internet, see <a href="#webpages">web pages</a> Since it is organized in several directories and thousands of files, using an FTP program such as FileZila is the only option.<br> <br> You do not have to download all the files. You can start with few files around RA=0 and DEC=0 as files \N0000\0001.GSC (38 Kbytes compressed ) . . 0002.GSC ... to have a look how it works. Put them on your hard disk in the same directories (folders) as found. The index files under \tables\regions.tbl are no longer required<br> <br> HNSKY will operate with the original GSC 1.1 CD-ROMs in the ISO 9660 FITS format (issue date of 1 August 1992, 2 CD'S full) or with the newer <a href="ftp://cdsarc.u-strasbg.fr/cats/I/254/GSC/">GSC 1.2</a> (303 Mbytes, dated 2001) provided in binary format from internet or the GSC_ACT. HNSKY doesn't work with the "compressed" data found on other CD-ROM astronomy programs.<br> <br> Here is some important GSC information for people who download the GSC from internet:<br> <br> The star information is stored in *.GSC files.<br> <br> They should be in the original directory or maps (steps of declination):<br> <br> Directory or map structure CD-ROM GSC north:<br> <br> &nbsp;&nbsp;&nbsp;&nbsp;\GSC\N0000 (Contains 0001.GSC till 0593.GSC)<br> &nbsp;&nbsp;&nbsp;&nbsp;\GSC\N0730<br> &nbsp;&nbsp;&nbsp;&nbsp;\GSC\N1500<br> &nbsp;&nbsp;&nbsp;&nbsp;\GSC\N2230<br> &nbsp;&nbsp;&nbsp;&nbsp;\GSC\N3000<br> &nbsp;&nbsp;&nbsp;&nbsp;\GSC\N3730<br> &nbsp;&nbsp;&nbsp;&nbsp;\GSC\N4500<br> &nbsp;&nbsp;&nbsp;&nbsp;\GSC\N5230<br> &nbsp;&nbsp;&nbsp;&nbsp;\GSC\N6000<br> &nbsp;&nbsp;&nbsp;&nbsp;\GSC\N6730<br> &nbsp;&nbsp;&nbsp;&nbsp;\GSC\N7500<br> &nbsp;&nbsp;&nbsp;&nbsp;\GSC\N8230<br> &nbsp;&nbsp;&nbsp;&nbsp;\GSC\S0000<br> <br> The above structure should be kept on CD-ROM or hard disk. The main directory is normally \GSC\ but can be set in menu "SETTINGS".<br> <br> For more information download the readme files from the Web Pages mentioned above.<br> <br> <img src="hns_set2.png" style="margin-right: 8pt; float: left; max-width: 49%;"> <br> In the past the files from other servers where provided in *.GZ format and have to be unzipped using GZIP (not PKUNZIP !) or WINZIP. If the resulting filename is 0001_GSC, 0002_GSC... then they should be renamed as 0001.GSC, 0002.GSC ....<br clear="all"> <br> <a href="#index">Back to the index</a> <hr> <a name="tycho2"></a><big><b>Tycho-2 information.</b></big><br> <br> The Tycho2++ is the standard star database used in the HNSKY program. Format is in the <a href="#database">290</a> format. It is made from the combined Tycho-2 and <a href="#ucac4">UCAC4</a> star catalogues free available from the <a href="http://cdsweb.u-strasbg.fr/">CDS</a>(Centre de Donnes astronomiques de Strasbourg) webpage. The Tycho-2++ contains 4,7 million stars if which 2.5 million Tycho stars and additional about 2.2 million UCAC4 stars to make it complete up to magnitude 12.5.<br> <br> The reason the UCAC4 was not used completely is the poor magnitude value for some bright stars. This compilation was created by adding all UCAC4 star without an HIP, FK6 or Tycho label to Tycho-2. The only exception is the Polar star. This star was due to it's importance added manually. It is include in original Tycho-2 but without position and labelled with flag HIP source in UCAC4 so omitted in the automatic merge.<br> <br> The star proper motion is not included, but an update with the correct epoch (currently 2017) will released.<br> <br> The star labels of both the Tycho-2 and UCAC4 stars, magnitude and accurate position are preserved in the very compact HNSKY format of 11 bytes only. See <a href="#database">.290</a> format description.<br> <br> Total size of Tycho-2++ is about 46 Mbyte. Up to magnitude 7 it contains 147 UCAC4 stars and up to magnitude 10 it contains only 336 UCAC4 stars.<br> <br> <i>Abstract:<br> <br> The Tycho-2 Catalogue is an astrometric reference catalogue containing positions and proper motions as well as two-colour photometric data for the 2.5 million brightest stars in the sky. The Tycho-2 positions and magnitudes are based on precisely the same observations as the original Tycho Catalogue (hereafter Tycho-1; see Cat. &lt;I/239&gt;)) collected by the star mapper of the ESA Hipparcos satellite, but Tycho-2 is much bigger and slightly more precise, owing to a more advanced reduction technique.<br> <br> Components of double stars with separations down to 0.8 arc sec are included. Proper motions precise to about 2.5 mas/yr are given as derived from a comparison with the Astrographic Catalogue and 143 other ground-based astrometric catalogues, all reduced to the Hipparcos celestial coordinate system. Tycho-2 supersedes in most applications Tycho-1, as well as the ACT (Cat. &lt;I/246&gt;) and TRC (Cat. &lt;I/250&gt;) catalogues based on Tycho-1. Supplement-1 lists stars from the Hipparcos and Tycho-1 Catalogues which are not in Tycho-2. Supplement-2 lists 1146 Tycho-1 stars which are probably either false or heavily disturbed.<br> <br> For more information, please consult the Tycho-2 home page: <a href="#webpages">webpages</a></i><br> <br> <a href="#index">Back to the index</a> <hr> <a name="ucac4"><big><b>The UCAC4 star catalog.</b></big><br> <br> All the UCAC4 stars are in the </a><a href="#star_catalogues">native HNSKY U16 star database</a>. Only if you want star proper motion implemented or the original designation you could download the 113 million stars, 8.5 Gbytes large USNO UCAC4 from <a href="ftp://cdsarc.u-strasbg.fr/cats/I/322A/UCAC4/">ftp://cdsarc.u-strasbg.fr/cats/I/322A/UCAC4/</a> HNSKY can access this catalog directly. Download Z001 to Z900 from the U4b directory and add to the same directory file u4index.unf from U4i. This is a catalog where HNSKY will use proper motion for maximum accuracy.<br> <br> Link in menu <a href="#settings_tab2">SETTINGS</a> to this U4b directory.<br> <br> For more information download the readme files from the web Page mentioned above.<br> <br> The magnitude error is larger then for the Tycho catalog. HNSKY will select the brightest value from "UCAC fit model magnitude", "UCAC aperture magnitude" and "B magnitude from APASS". The 2MASS unique star identifier is displayed in the status bar of HNSKY.<br> <br> Here an example of NGC884 &amp; NGC869 using the UCAC4:<br> <br> <img src="hns_ucac4.png" style="margin-right: 8pt; float: left; max-width: 49%;"> <i>Abstract:<br> <br> UCAC4 is a compiled, all-sky star catalog covering mainly the 8 to 16 magnitude range in a single bandpass between V and R. Positional errors are about 15 to 20 mas for stars in the 10 to 14 mag range. Proper motions have been derived for most of the about 113 million stars utilizing about 140 other star catalogs with significant epoch difference to the UCAC CCD observations. These data are supplemented by 2MASS photometric data for about 110 million stars and 5-band (B,V,g,r,i) photometry from the APASS (AAVSO Photometric All-Sky Survey) for over 50 million stars. UCAC4 also contains error estimates and various flags. All bright stars not observed with the astrograph have been added to UCAC4 from a set of Hipparcos and Tycho-2 stars. Thus UCAC4 should be complete from the brightest stars to about R=16, with the source of data indicated in flags. UCAC4 also provides a link to the original Hipparcos star number with additional data such as parallax found on a separate data file included in this release.<br> <br> The proper motions of bright stars are based on about 140 catalogs, including Hipparcos and Tycho, as well as all catalogs used for the Tycho-2 proper motion construction. Proper motions of faint stars are based on re-reductions of early epoch SPM data (-90 to about -20 deg Dec) and NPM (PMM scans of early epoch blue plates) for the remainder of the sky. These early epoch SPM data have also been combined with late epoch SPM data to arrive at proper motions partly independent from UCAC4 (Girard et al. 2011). The NPM data used in UCAC4 are not published. No Schmidt plate data is used in UCAC4.</i><br clear="all"> <br> <a href="#index">Back to the index</a> <hr> <a name="nomad"></a><big><b>NOMAD catalog.</b></big><br> <br> The Naval Observatory Merged Astrometric Dataset (NOMAD)<br> <br> Nomad is only available as online version.<br> <br> Here an example of NGC884 &amp; NGC869 using the using the NOMAD online catalog:<br> <br> <img src="hns_nomad.png" style="margin-right: 8pt; float: left; max-width: 49%;"> <i>Abstract:<br> <br> The U. S. Naval Observatory is pleased to announce the first release of the Naval Observatory Merged Astrometric Dataset (hereafter referred to as NOMAD). NOMAD is a simple merge of data from the Hipparcos, Tycho-2, UCAC-2 and USNO-B1 catalogues, supplemented by photometric information from the 2MASS final release point source catalogue. The primary aim of NOMAD is to help users retrieve the best currently available astrometric data for any star in the sky by providing these data in one place.. The 100 GB dataset contains astrometric and photometric data for over 1 billion stars.</i><br clear="all"> <br> <a href="#index">Back to the index</a> <hr> <a name="b1950"></a><big><b>Conversion B1950 to J2000.</b></big><br> <br> delta DEC:=50 * 50.274*sin (pi*23.442/180)*cos(RA)<br> input in radians, output in DEC seconds to be added to DEC1950 to get DEC2000.<br> delta RA:=50 * (3.3516)*(cos(pi*23.442/180)+(sin (pi*23.442/180)*sin(RA)*tan(DEC) ))<br> input in radians, output in RA seconds, to be added to RA1950 to get RA2000.<br> <br> (This formula is an approximation and is not accurate near the polar regions)<br> <br> <a href="#index">Back to the index</a> <hr> <a name="saturnm1"></a><big><b>Example load event.</b></big><br> <br> You have just have just adjusted the date at 2002-7-25, 3:30 UT and zoomed in to M1. Saturn is eclipsing M1. This event can be saved as"Eclipse of the Crab nebula by Saturn". To recall this event, justload this file as an event. The time of the event, position and zoom factor will be returned.<br> <br> <a href="#index">Back to the index</a> <hr> <a name="saveload"></a><big><b>Saving and loading program status.</b></big><br> <br> <img src="hns_men1.png" style="margin-right: 8pt; float: left; max-width: 49%;"> <br> <b>Save status</b> in the pull down menu "File" will save all your settings including your position on Earth, equinox, parallax, time zone, window size and night vision mode. These settings are stored in the file DEFAULT.HNS. After start-up these settings are loaded again automatically. Depending on your setting in main menu "SETTINGS", the program will start with the view at midnight or actual. The save/load option behaviour is different for high and low magnifications or zoom factors. For high zoom factors, the program will return the same RA/DEC as saved. Due to time differences, the view will be slightly rotated, unless load event to restore original time and date is used. For low zoom factors, the program will always return the same Azimuth/Altitude as saved. This is good for start-up overviews such as a wide view to the south.<br> <br> <b>Save as</b> The program settings are saved in a different file then DEFAULT.HNS. "Save as" is a helpful tool to find and restore your favourite object.<br> <br> <b>Load status</b> The saved status is restored. This will not (unless your load DEFAULT.HNS) effect your settings for position on Earth, equinox, parallax, time zone, window size and night vision mode and time settings)<br> <br> <b>Load event</b> As load status but also the original time and date are restored.<br> <br> <a href="#saturnm1">Example load event</a><br> <br> <a href="#projection">See also subject 'Projection method'</a><br clear="all"> <br> <a href="#index">Back to the index</a> <hr> <a name="instruments"></a><big><b>Instruments and found markers.</b></big><br> <br> Several instruments are available:<br> <br> <img src="hns_men2.png" style="margin-right: 8pt; float: left; max-width: 49%;"><br clear="all"> <br> Several found markers are available:<br clear="all"> <br> <img src="hns_men3.png" style="margin-right: 8pt; float: left; max-width: 49%;"><br clear="all"> <br> <a href="#index">Back to the index</a> <hr> <a name="requirements"></a><big><b>Program files.</b></big><br> <br> The following files are part of the program:<br> <br> Located in: C:\Program Files\hnsky:<br> <br> <table width="900" cellspacing="0" cellpadding="4" border="1"> <tbody> <tr> <td valign="center"><b>hnsky.exe</b></td> <td valign="center">Main program</td> </tr> <tr> <td valign="center"><b>sao_hsky.dat</b></td> <td valign="center">Star database,<a href="#sao">SAO</a> stars to magnitude 9.5</td> </tr> <tr> <td valign="center"><b>ppm_hsky.dat</b></td> <td valign="center">The <a href="#ppm">PPM</a> star database and <a href="#ppmsup">supplements</a> to magnitude 10.0 (468861 stars)</td> </tr> <tr> <td valign="center"><b>tyc_*.290</b></td> <td valign="center"><a href="#tycho2">Tycho-2</a> star database containing 2.5 million stars. .290 file format. (32 files).<br> </td> </tr> <tr> <td valign="center"><b>Deep&nbsp;sky&nbsp;level&nbsp;1.hnd</b><br> <b>Deep sky level 2.hnd</b><br> <b>Deep sky level 3.hnd</b><br> </td> <td valign="center">- Small deep sky databases with 267 selected objects. Good start for beginners.<br> - Large deep sky database with 2600 objects. Up to magnitude 12. GX&gt;=1 arc min.<br> - Very large deep sky database with 26000 objects. Up to magnitude 15.5. GX&gt;=1 arcsin. </td> </tr> <tr> <td valign="center"><b>deepsky.chm</b></td> <td valign="center">Deep sky help file containing more then 10.000 deep sky observations by Steve Gottlieb, Steve Coe and Tom Lorenzin.</td> </tr> <tr> <td valign="center"><b>*.ini<br> </b></td> <td valign="center"><a href="#nonenglish">Non English</a> menu translation files<br> </td> </tr> </tbody> </table> <br> Located in: Documents\hnsky<br> <br> <table width="900" cellspacing="0" cellpadding="4" border="1"> <tbody> <tr> <td valign="center"><b>hns_com1.cmt<br> </b></td> <td valign="center">The <a href="#comet">comet</a> database.</td> </tr> <tr> <td valign="center"><b>hns_ast1.ast</b></td> <td valign="center">The <a href="#comet">asteroid</a> database.</td> </tr> <tr> <td valign="center"><b>hns_****.sup</b></td> <td valign="center">Several deep sky and star <a href="#supplements">supplements</a> files, in ASCII format. (Milky Way, Yale catalog, binary and variable <br> stars, messier objects, world map. </td> </tr> <tr> <td valign="center"><b>*.hns<br> </b></td> <td valign="center">Setting and event files in ASCII format.you can load/save. During start-up 'default.hns is loaded'<br> </td> </tr> </tbody> </table> <br> Located in: Documents\hnsky\fits<br> <br> <table width="900" cellspacing="0" cellpadding="4" border="1"> <tbody> <tr> <td valign="center"><b>*.fit&nbsp;<br> </b></td> <td valign="center">Several deep sky and planetary images in FITS format.</td> </tr> </tbody> </table> <br> Located in: Documents\hnsky\cache<br> <br> <table width="900" cellspacing="0" cellpadding="4" border="1"> <tbody> <tr> <td valign="center"><b>*.txt</b></td> <td valign="center">Cache of online downloaded star catalogues UCAC4, NOMAD.</td> </tr> </tbody> </table> <br> The above files locations are for v3.0.1 and higher<br> The Windows hidden "Application Data" directory is not used by purpose.<br> <br> New fresh installations of the program will by default be placed in the "c:\Program Files\hnsky" directory. Existing installations will stay in the previous selected directory such as "c:\hnsky". If you want to move the new location, then save your default.hns settings file somewhere else, uninstall the old version, install the new version and copy &amp; overwrite the default.hns file.<br> <br> The following databases can be accessed directly if downloaded:<br> <br> <a href="#ucac4">UCAC4</a> 113 million stars, dated 2014<br> <a href="#gsc">GSC1.2</a> 15 million stars, dated 2001.<br> <br> Instead of the above mentioned UCAC4 or GSC1.2 you could access online:<br> <br> <a href="#ucac4">UCAC4</a><br> <a href="#nomad">NOMAD</a><br> <br> UCAC4 (local &amp; online) and NOMAD are the only databases which will provide star proper motion..<br> <br> The online FITS files and UCAC4, NOMAD star cache files are placed in the FITS directory. The star cache files can be cleared form the FILE menu, "Delete online cache", however the will not slow down the program in any way. The online downloaded FITS files can be deleted from the pop-up menu.<br> <br> Selection of deep sky databases: The different databases can be selected in the "<a href="#object_menu">OBJECT menu</a>". For beginners it is advisable to select the small deep sky database HNS_SAC1.DAT which contains 265 easy and/or interesting objects including all Messier deep sky objects. For all these object, there are FITS images available which will blend automatically in the map if required.<br> <br> <a href="#index">Back to the index</a> <hr> <a name="nonenglish"></a><big><b>Non-English versions.</b></big><br> <br> <b>Menus:</b><br> <br> HNSKY is available in several languages. The translated text is stored in one INI file. To select an other language INI file go to FILE menu, sub menu <a href="#settings_tab2">SETTINGS</a> (CTRL+E) and select the desired language file.<br> <br> With any text editor, you could create a new language module for HNSKY. If your native language is missing, your are invited to create a new language module. Download the English module from <a href="">The HNSKY web page</a>, translate it and send it back to me.<br> <br> <b>Help file:</b><br> <br> Available in English and <a href="../e/hnsky.htm">Spanish</a>. Some obsolete translations are still available: <a href="http://www.hnsky.org/help/ca/hnsky.htm">Catalan</a>, <a href="http://www.hnsky.org/help/i/hnsky.htm">Italian</a>, <a href="http://www.hnsky.org/help/ro/hnsky.htm">Romanian</a>, <a href="http://www.hnsky.org/help/kor/hnsky.htm">Korean</a>, Volunteers to update or create new translations are welcome.<br> <br> <a href="#index">Back to the index</a> <hr> <a name="shortcuts"></a><big><b>Personal menu shortcuts.</b></big><br> <br> All <a href="#nonenglish">non English versions</a> including the English module have the possibility to add your personal menu shortcuts.<br> <br> For example if you look inside the file ENGLISH.INI in HNSKY <a href="#requirements">directory</a>, you can modify the menu shortcuts. This looks like:<br> <pre><font size="3"> &nbsp;&nbsp;&nbsp;&nbsp;savesettingsS = CTRL+W &nbsp;&nbsp;&nbsp;&nbsp;loadS = CTRL+L &nbsp;&nbsp;&nbsp;&nbsp;loadeventS = CTRL+J &nbsp;&nbsp;&nbsp;&nbsp;locationS = CTRL+E &nbsp;&nbsp;&nbsp;&nbsp;asteroideditorS = CTRL+1 &nbsp;&nbsp;&nbsp;&nbsp;cometeditorS = CTRL+2 </font></pre> All labels should be there. Removing them will result in blank menu items.<br> <br> You could enter keys such as W or CTRL+W or Alt+W or CTRL+Alt+W. Single letters such a W (except F1, F2 ...) are not recommended, since they will block typing in the SEARCH menu.<br> <br> To disable these files, delete or remove the *.ini file(s). The original English text and menu short cuts will return. You could also delete the settings file "default.hns" but you will loose all you settings including you position.<br> <br> <a href="#index">Back to the index</a> <hr> <a name="units"></a><big><b>Units and spectral types:</b></big><br> <br> <b>Brightness:</b> Magnitude pro square arc minute.<br> <br> <b>Size:</b> Size or diameter in arc minutes. In case an " is displayed, the diameter is in arc seconds (typical for planets)<br> <br> <b>Spectral types of stars:</b><br> <br> The <a href="#spectral">spectral</a> types of stars are defined with two characters.<br> <br> <a href="#database">See also subject 'Database files of stars and deep sky objects'</a><br> <br> <a href="#index">Back to the index</a> <hr> <a name="accuracy"></a><big><b>Accuracy of the program:</b></big><br> <br> General remark: HNSKY has a high accuracy. To get comparable and correct ephemerides it is important to set:<br> <br> &nbsp;&nbsp;&nbsp;&nbsp;1) Geographical position on Earth correct.<br> &nbsp;&nbsp;&nbsp;&nbsp;2) Time zone and day light savings. When necessary check the UTC time in the pull down menu "ABOUT". To get maximum moon and Sun accuracy, select T correction on.<br> &nbsp;&nbsp;&nbsp;&nbsp;3) Desired equinox. Normally J2000.<br> &nbsp;&nbsp;&nbsp;&nbsp;4) Correction for parallax error on for topocentric values and off for geocentric values.<br> <br> <a href="#dt_time">For 2) See subject 'ET and UT time'</a><br> <a href="#clock">For 2) For time zone of major cities see subject 'System time, time zone and location on Earth'</a><br> <br> All positions of the Deep sky and planetary objects are astrometric referred to equinox <b>J2000</b> (2000, January 1.5), equinox <b>B1950</b>, the <b>mean</b> equinox of the current date or<b> apparent</b>. These are the co-ordinates as they would appear to a stationary observer at the year 2000, 1950 or current date. Star positions in <b>J2000</b> or <b>B1950</b> may be compared directly with planet positions. The mean position is depending on the orientation of the earth of that epoch. The <b>apparent</b> position are the <b>mean</b> positions corrected for the velocity of the moving Earth <a href="#glossary">aberration</a> and wobble of the earth axis <a href="#glossary">nutation</a>. These aberration and nutations are effecting both stellar and planet positions equally (max. 30 arc seconds) and does no effect the displayed map.<br> <br> The desired equinox can be selected via main menu "FILE" and then menu option "SETTINGS".<br> <br> <a name="set_time"></a><b>Date and time setting:</b><br> <br> <img style="margin-right: 8pt; float: left; max-width: 49%;" src="hns_date.png"><br> Enter the required date and time in the "set time" menu. The day of the month can be entered with fraction. So entering 30.5 will give day 30 at 12 noon.<br> It follows the astronomical year numbering including year 0. Historians did not use the Latin zero, nulla, as a year, so the year preceding AD 1 is 1 BC. So year -44 is "45 BC"<br> <br> The build in monthly calendar doesn't allow a date beyond 1752 and 9999 so a parallel input is created.<br clear="all"> <br> <img style="margin-right: 8pt; float: left; max-width: 49%;" src="hns_date2.png"><br> Alternatively you could enter the date as Julian day in the JD tab.<br clear="all"> <br> <b>Valid dates of the program :</b><br> <br> The program has an internal analytical planetary solution which is accurate for dates between the year 1750 and 2250, except for Pluto, which is only accurate between 1890 and 2100. For a longer period or higher accuracy download the <a href="#jpl_de">JPL Propulsion Laboratory Development Ephemeris</a> DE430 or DE431. The DE431 covers the years -13000 up to 16999.<br> <br> The internal analytical planetary solution is based on "Astronomy on the Personal Computer" by O. Montenbruck and T. Pfleger, 1998, English edition (Almost equal to 1993 edition). This is a very detailed book for Pascal programmers and contains several professionally written routines. The source code is on an attached disk. This book is not intended to be a teaching guide.<br> <br> Ephemerides calculations for the moons of Mars, Jupiter, Saturn Uranus, and Neptune are based on their rotation period and their correct axis orientation (Theta) in space. Their rotation center position equals the planet position is known from the planet ephemerides. A basic X,Y,Z calculation is required to determine their final position in space. Their orbit is calculated as perfect circular, which is for the major moons more or less correct. Only for the Moons of Jupiter a correction for their gravitational interactions factors is made based on some factors found in the book of Meeus, Astronomical Algorithms edition 1991.<br> <br> <b>Accuracy of Planet and Moon ephemerides:</b><br> <br> The internal ephemerides of the planets have a typical error of a few arc seconds with a maximum of about ten arc seconds. Only Neptune has a maximum error of about 40 arc seconds.<br> <br> The internal ephemerides of the Moon are correct within about one arc second. It is important to select "T correction" on to get accurate Moon eclipses. The resulting eclipse is correct within one maybe two minutes. The JPL Propulsion Laboratory Development Ephemeris should be spot on.<br> <br> Rise and set time should be correct within, perhaps, two minutes. To get accurate rise and set times, the atmospheric refraction correction should be set "ON" (menu "SET EQUINOX AND LOCATION"). Light from objects close to the horizon is bent while passing through the atmosphere. Objects close to the horizon will appear to be higher then their actual position. At zenith, this effect is zero and increases towards the horizon. At an altitude of 45 degrees it is only 1 arc-minute. At an altitude of 10 degrees it is 5 arc-minutes and at the horizon it increases rapidly to about 35 arc-minutes.<br> <br> <a href="#glossary">See explanation of atmospheric refraction in the glossary</a><br> <br> Note that the rise and set time are given for a date. So if the HNSKY time is at 2015-11-25 24:00 hours and the rise time is give as 00:05 hours it happens in the morning at 2015-11-25 00:05 hours and most likely for you in the past. Is the HNSKY time at 2015-11-26 00:00 hours, rise and set times are given for date 2015-11-26.<br> <br> Moon ephemerides reference: In general, the positions of the moons of Mars, Jupiter, Saturn, Uranus and Neptune are displayed with an error of 10 arc seconds or less. As a reference the ephemeris values of the 'Bureau of Longitudes' in France, <a href="#webpages">web address</a> and the "Solar System Dynamics Group of JPL", <a href="#webpages">web address</a> were used.<br> <br> <b>Remarks:</b><br> <br> - The parallax error can be corrected. To get the geocentric value instead of the topocentric value, switch correction for parallax "OFF".<br> - Error due to speed of light, velocity of planets is corrected.<br> - Rise and set time. They are all, except for the Sun and Moon, given for the center of the object. For the Sun and Moon it is given for the upper limb of the disk.<br> <br> <b>Accuracy of the star database:</b><br> <br> Star motion (proper motion) is not implemented except for the USNO <a href="#ucac4">UCAC4</a> and online <a href="#nomad">NOMAD</a>. The HNSKY version of the SAO database does not contain star motion. Star position is correct for Equinox and Epoch 2000. For any other date only the Equinox can (if selected) be recalculated to the equinox of the current date or 1950. This means that in the several decades, before and after the year 2000, the positions of a few stars will have small errors. These (nearby) stars will move slowly across the sky introducing an error in arc seconds. If this program is still in use after 50 years, an updated star database could be created.<br> <br> In addition to above, the star motion data is in the GSC database is not available. This catalog is based photographic plates made in 1978 and has therefore an epoch of around 1978 and positions are given in equinox J2000.<br> <br> <a href="#index">Back to the index</a> <hr> <a name="cross"></a><big><b>Angular measuring tools, found object markers.</b></big><br> <br> <b>Angular measuring tools:</b><br> <br> In the main menu "SCREEN" there are four tools to measure and aim objects:<br> <img src="hns_meas.png" style="margin-right: 8pt; float: left; max-width: 49%;"> <br> 1) Cross-hair. Automatic adjusted circles for quick estimate of distances. The numbers in the cross-hair indicate the distance from the center (radius !!) of the cross-hair in degrees. The numbers are in line to the north.<br> <br> 2) CCD measuring frame. At the mouse cursor a squire box will be shown, orientated North/South. The size of the frame is defined under "FILE", "SETTINGS". This frame will help you to determine which part of the sky is visible on your CCD or your photographic film.<br> <br> 3) Pointing device. This can be used as a simulation of an aiming device such as TelRad. It shows maximum 5 fixed size circles. These aiming devices such as Telrad consists of a glass plate through which you look at the sky, which project's three concentric red circles (typical 4, 2, and 0.5 degrees) "superimposed" on the sky. You simply move the telescope while looking at the sky through the Telrad finder until the circles are centred on the desired object.<br> <br> 4) Zoom box. While keeping left mouse button down and pulling with the mouse a zoom square, the distance and angle are give in the status bar. Make zoom box small afterwards to prevent zooming in or use CTRL+Z to return to previous view.<br clear="all"> <br> <b>Found object markers</b><br> <br> As soon an object is found in the database it can be marked in three ways as set in main menu 'SCREEN', sub menu 'FOUND OBJECT MARKER':<br> <br> &nbsp;&nbsp;&nbsp;&nbsp;1) Two short lines orientated North-South.<br> &nbsp;&nbsp;&nbsp;&nbsp;2) Pointing circle marker. This is very handy to make a field map with several of these circles.<br> &nbsp;&nbsp;&nbsp;&nbsp;3) Name of object marker.<br> &nbsp;&nbsp;&nbsp;&nbsp;4) Magnitude of object marker.<br> <br> Then there is the special possibility to copy the object info into the clipboard so it can be passed into other Windows applications.<br> <br> <a href="#index">Back to the index</a> <hr> <a name="dss"></a><big><b>Deep sky images from DSS and other.</b></big><br> <br> <img src="hns_fit1.png" style="margin-right: 8pt; float: left; max-width: 49%;"> <br> <b>Functionality:</b> HNSKY can add deep sky images to the normal sky map. You can download them directly from the internet using the <a href="#keys">pop-up</a> menu. This is the easiest and simplest method. You could add your own images. These images should be in the FITS format with the extension *.FIT *.FITS or *.FIT*. Each image should contain information about its position and size and orientation in the so-called WCS format. HNSKY will read all FITS file as available and if required, plot them with the right size and orientation.<br> <br> Images without the additional WCS keywords and can't be used, unless you add them using e.g. the HNS_FITS program. For more information see "compatibility".<br> <br> <b>Reducing size:</b> The FITS file size can be later reduced with HNS_REAL till close to 50 % by converting them to an 8 bit FITS. The same program HNS_REAL (the DSS or Realsky CD viewer) can also be used to produce batch wise images in 16 or 8 bits using. 8 bit files Becomes the non-standard file extension *.FIT8 just for convenience.<br> <br> <b>Filtering:</b> The <a href="#requirements">directory</a> where HNSKY will look for FITS files can be set in SETTINGS. It will read all available 8, 16 bit or -32 float FITS files. If you have more then a few hundred FITS files, a file mask or filter could speed up the loading. Examples: 23*45*.FIT* or *_ORI.FIT*.<br> <br> <b>Image color:</b> The color of the images is normally red but can be set in one of the basic RGB colors in the menu SETTINGS, sub menu COLORS. The program supports also color FITS files but only in the format described below. CCD images normally don't produce this type. You will need HNS_FITS for this but have to create the WCS manually.<br clear="all"> <br> <img style="margin-top: 12pt; margin-right: 8pt; float: left; max-width: 49%;" src="hns_obj2.png"><br> <br> <b>Background, Brightness:</b> The FITS background and brightness are adjustable with the two sliders at the bottom of the OBJECT menu. Some deep sky DSS pictures are under-overexposed and need some fine-tuning to get maximum detail.<br> <br> The first pixel in the DSS gets a hint containing the FITS file name and size. Normally that is the south-east corner.<br> <br> <b>Printing:</b> Best printing results are obtained with a color printer. A black and white laser printer give less satisfactory results while the gray simulation spoils small details. In some cases a fixed map orientation to the North could improve plotting since the pixels are plotted as squares.<br> <br> <b>Compatibility:</b> FITS images are very popular in astronomy and can contain all kinds of information but in our case just an image. The FITS (Flexible Image Transport System) files start with a pretty long information header, which in our cases should contain the image size, position and orientation in a subset of the so called WCS (World Coordinate System) format.<br> <br> HNSKY will read FITS files containing the following WCS keywords:<br> <pre><font size="3"> &nbsp;&nbsp;&nbsp;&nbsp;BITPIX = 8, 16, 24, 32 bit integers, -32 ,-64 bit float &nbsp;&nbsp;&nbsp;&nbsp;NAXIS1 = Length X axis &nbsp;&nbsp;&nbsp;&nbsp;NAXIS2 = Length Y axis &nbsp;&nbsp;&nbsp;&nbsp;DATAMIN = Minimum valid value in the image &nbsp;&nbsp;&nbsp;&nbsp;DATAMAX = Maximum valid value in the image &nbsp;&nbsp;&nbsp;&nbsp;CRPIX1 = Refpix of X axis &nbsp;&nbsp;&nbsp;&nbsp;CRPIX2 = Refpix of Y axis &nbsp;&nbsp;&nbsp;&nbsp;CRVAL1 = RA at Ref pix in decimal degrees &nbsp;&nbsp;&nbsp;&nbsp;CRVAL2 = DEC at Ref pix in decimal degrees &nbsp;&nbsp;&nbsp;&nbsp;CDELT1 = RA pixel step in degrees &nbsp;&nbsp;&nbsp;&nbsp;CDELT2 = DEC pixel step in degrees &nbsp;&nbsp;&nbsp;&nbsp;CROTA2 = Rotation angle </font></pre> Almost all DSS images contain in the header 2x20 DSS polynomial factors to calculate the pixel position with a high accuracy. These polynomials compensate for optical or plate non-linearities. These factors are not used in HNSKY.<br> <br> Color FITS files can come in two types. They are using a third dimension for the RGB color information. HNSKY supports only the type where BITPIX=8 and NAXIS1=3 and does not support NAXIS3=3.<br> <br> Example of a compatible FITS header:<br> <pre><font size="3"> &nbsp;&nbsp;&nbsp;&nbsp;SIMPLE = T / Standard FITS format flag &nbsp;&nbsp;&nbsp;&nbsp;BITPIX = 8 / Bits per pixel &nbsp;&nbsp;&nbsp;&nbsp;NAXIS = 3 / Number of dimensions &nbsp;&nbsp;&nbsp;&nbsp;NAXIS1 = 3 / Number of Colors &nbsp;&nbsp;&nbsp;&nbsp;NAXIS2 = 382 / Row length &nbsp;&nbsp;&nbsp;&nbsp;NAXIS3 = 255 / Number of rows </font></pre> HNSKY uses this format for the coloured planetary images made with the program HNS_FITS.<br> <br> <a href="#index">Back to the index</a> <hr> <a name="jovian"></a><big><b>Moons of Mars, Jupiter, Saturn, Uranus and Neptune.</b></big><br> <br> <img src="hns_ura1.png" style="margin-right: 8pt; float: left; max-width: 49%;"> <br> The following moons to magnitude 14 or so are included:<br> <br> &nbsp;&nbsp;&nbsp;&nbsp;Mars: Phobos, Deimos<br> &nbsp;&nbsp;&nbsp;&nbsp;Jupiter: IO, Europa, Ganymede, and Callisto<br> &nbsp;&nbsp;&nbsp;&nbsp;Saturn: Mimas, Enceladus,Tethys, Dione, Rhea, Titan, Hyperion and Iapetus<br> &nbsp;&nbsp;&nbsp;&nbsp;Uranus: Ariel, Umbriel, Titania and Oberon.<br> &nbsp;&nbsp;&nbsp;&nbsp;Neptune: Triton.<br> <br> They are drawn proportional around Jupiter and Saturn. To see them, a high zoom factor is required. (use Pgup/Pgdown or auto zoom option in search menu). At these magnifications you will need <a href="#view">solar tracking</a> otherwise as soon the time is changed it will move out of sight..<br> <br> Change the time by using the buttons F3, F4, F5 and F6. The moons will also start to rotate their planets. The planet's position will change due to its own motion through the sky.<br> <br> Not all moons are so easy to see. See following <a href="#telescope_view">table of limiting magnitude of telescopes.</a><br> <br> Here is some more Moon information <a href="#sun">'Sun and planet &amp; Moon data'.</a><br> <br> Version 3.0.0a show the moon shadows on the planets disk.<br> <br> Good example have a look to Jupiter at 2015-1-24, at 6:30 UTC<br clear="all"> <br> <a href="#index">Back to the index</a> <hr> <a name="eclipse"></a><big><b>Solar and lunar eclipses.</b></big><br> <br> <img src="hns_ecl1.png" style="margin-right: 8pt; float: left; max-width: 49%;"><br> The program is very suitable to observe and study solar and lunar eclipses. A solar eclipse occurs when the Earth slips in the shadow of the Moon. Only a very small part of the Earth surface will become fully dark. A lunar eclipse occurs when the Moon slips in the shadow of the Earth. While the Earth is much bigger then the Moon, also it's shadow is much larger. The complete Moon can slip inside the Earth shadow. A lunar eclipse is visible from anywhere on the night side of the Earth.<br> <br> Lunar eclipse in HNSKY: As soon the phase of the Moon reaches 99.8 %, the two shadow boarders (umbra and penumbra) are drawn by the HNSKY program. The inner circle (umbra) is where the Sun light is fully blocked by the Earth. In practice still a small part of the Sunlight is scattered through the Earth's atmosphere inside the umbra and the Moon will get a dark reddish color. The outer circle (Penumbra) indicates where the Sunlight is partial blocked by the Earth. Observers will see only the slightest dimming. Unless at least half of the Moon enters the penumbra, the eclipse may be undetectable !<br> <br> The<a href="#animation"> animation</a> menu allows to find the lunar and solar eclipses for your location as set.<br> <br> See also remarks at <a href="#accuracy">Accuracy of the program</a><br> <br> Solar eclipse in HNSKY: The Moon will cover up the Sun.<br> <br> Example of lunar eclipses:<br> <br> - 2000-1-21, 4:44 UTC<br> <br> - 2000-7-16, 13:56 UTC<br> <br> Example of solar eclipses:<br> <br> - 1999-8-11, 10:35 UTC position at 10 degrees east, 48.6 degrees north. Full eclipse. (Germany)<br> <br> - 2001-6-21, 12:54 UTC, position at 20 degrees east, 12.4 degrees south, Full eclipse. (Angola/Zambia)<br> <br clear="all"> <br> For all lunar eclipse see: <a href="http://en.wikipedia.org/wiki/List_of_21st-century_lunar_eclipses">http://en.wikipedia.org/wiki/List_of_21st-century_lunar_eclipses</a><br> <br> For all solar eclipses see: <a href="http://en.wikipedia.org/wiki/List_of_solar_eclipses_in_the_21st_century">http://en.wikipedia.org/wiki/List_of_solar_eclipses_in_the_21st_century</a><br> <br> <a href="#index">Back to the index</a> <hr> <a name="future"></a><big><b>History and future of this program</b></big><br> <br> <b>History:</b><br> <br> HNSKY 1.0, February 1998.<br> HNSKY 1.1, March 1998, Major planets included<br> HNSKY 1.2, June 1998, High accuracy version and comets/asteroids included.<br> HNSKY 1.30, September 1998, Constellations and boundaries.<br> HNSKY 1.40, January 1999, Added deep sky contour option.<br> HNSKY 1.50, April 1999, moons of Mars, Uranus and Neptune included. Large internal reorganisation.<br> HNSKY 1.60, June 1999, Support for GSC catalog.<br> <br> HNSKY 2.00, October 1999, Win 95/98/NT version.<br> HNSKY 2.01, Nov/December 1999, Win95 hints, deep sky description.<br> HNSKY 2.04, March 2000, D32 files, CCD measuring frame. 2000 plus database<br> HNSKY 2.05, April 2000, USNO star database access, improved editor, syntax check.<br> HNSKY 2.1.0, December 2001<br> HNSKY 2.2.0, December 2002<br> HNSKY 2.3.0, June 2004<br> HNSKY 2.4.0, June 2013<br> <br> HNSKY 3.0.0, April 2015<br> HNSKY 3.2.0, January 2016<br> HNSKY 3.3.0, February 2017, added Jet Propulsion Laboratory Development Ephemeris support<br> <br> The latest version can be downloaded from my <a href="www.hnsky.org">web page</a>.<br> <br> <a href="#index">Back to the index</a> <hr> <a name="glossary"></a><big><b>Glossary.</b></big><br> <br> <b>BN: Bright Nebula.<br> GX: Galaxy.<br> GC: Globular cluster.<br> OC: Open Cluster.<br> PN: Planetary Nebula.<br> DN: Dark nebula.<br> CL+NB: Cluster with Nebulosity.b&gt;<br> GALCL: Galaxy cluster.<br> </b> <br> <b>Aberration</b>: An effect caused by the Earth's motion, which slightly changes the positions of stars. They tend to move to the same direction as the moving earth. This effect would be very visible if the earth moves close to the speed of light. However it moves much slower and the effect is in one direction only 20 arc seconds maximum. It will effect equally all objects in one direction and is for mapping purposes irrelevant.<br> <br> <b>Asteroid</b>: A small, rocky body that moves in an elliptical orbit around the Sun. They are too small to have atmospheres. Also called minor planet.<br> <br> <b>Arc minutes and seconds:</b> One complete circle has 360 degrees. There are 60 minutes (denoted as 60') of arc in 1 degree. There are 60 seconds (denoted 60") of arc in one minute of arc.<br> <br> <b>Astronomical Unit (AU)</b>: Approximately equal to the mean Earth-Sun distance, which is 150 000 000 km or 93,000,000 miles. Formally, the AU is actually slightly less then the Earth's mean distance from the Sun (semi-major axis) because it is the radius of a circular orbit of negligible mass (and unperturbed by other planets) that revolves about the Sun in a specific period of time. (1 AU = 149 597 870.66 km)<br> <br> <b>Cartesian co-ordinates</b>: (Astronomical) co-ordinate system where the position of an object is given in rectangular X, Y and Z values. This system is often used inside programs.<br> <br> <b>Comet</b>: Icy body embedded in a cloud of gas, which orbits around the Sun. When they orbit close to the Sun they heat up, releasing gas, which appears as a tail always pointing away from the Sun. In principle an icy minor planet.<br> <br> <b>DEC, Declination</b>: One element of the astronomical co-ordinate system on the sky that is used by astronomers. Declination, which can be thought of as latitude on the Earth projected onto the sky, is usually denoted by the lower-case Greek letter  = delta and is measured north (+) and south (-) of the celestial equator in degrees, minutes, and seconds of arc. The celestial equator is defined as being at declination zero (0) degrees; the north and south celestial poles are defined as being at +90 and -90 degrees, respectively.<br> <br> <b>Dynamical time, DT or Terrestrial Time (TT)</b>: A uniform measure of time, which is used to calculate solar objects. It was introduced to be independent of unpredictable variations of the Earth's rotation which forms the basis of Universal Time, UT. The difference between DT and UT was around the year 1900 set at zero and is now almost one minute. See also UTC and <a href="https://en.wikipedia.org/wiki/Terrestrial_Time">Wikipedia TT</a><br> <br> <b>Ephemeris (plural: ephemerides)</b>: A table listing specific data of a moving object, as a function of time. Ephemerides usually contain right ascension and declination, apparent angle of elongation from the Sun (in degrees), and magnitude (brightness) of the object; other quantities frequently included in ephemerides include the objects distances from the Sun and Earth (in AU), phase angle, and moon phase.<br> <br> <b>Epoch</b>: Point of time selected as a reference, especially for stellar positions and orbital elements. A photographic plate made in 1978 is a reference of star positions with epoch 1978 as well equinox 1978. While the drifting of the co-ordinates of the sky due to changes in the Earth's rotational axis is known their position could be calculated for 2000 or equinox 2000 is they do not move. This calculation will result in equinox 2000, epoch 1978. If their motion is known, also their epoch could be recalculated for 2000.<br> <br> <b>Equinox:</b> Equinox J2000 (2000,January 1.5), equinox B1950, equinox current date. These are the co-ordinates as they would appear to a stationary observer at the epoch, year 2000, 1950 or current date. See also epoch, vernal equinox and precession. <a href="#b1950">Click here to get the formulas for conversion equinox 1950 to 2000</a><br> <br> <b>Geocentric:</b> Co-ordinates referred to the center of the Earth. (Position in the sky as seen from the center of the Earth.<br> <br> <b>Heliocentric:</b> Co-ordinates referred to the center of the Sun.<br> <br> <b>Julian date (JD)</b>: The interval of time in days (and fraction of a day) since Greenwich noon on Jan. 1, 4713 BC. The JD is always half a day off from Universal Time. (In the past an astronomical day in Europe was defined to start at noon instead of midnight.) A Julian year is exactly 365.25 days in which a century (100 years) is exactly 36,525 days and in which 1900.0 corresponds exactly to 1900 January 0.5. This JD system is frequently used in astronomy. This way of time counting gives a continuous series of days and decimals of day, unbroken by subdivisions in months and (leap) years.<br> <br> <b>Mean anomaly</b>: See explanation orbital elements.<br> <br> <b>Minor planet</b>: See asteroid.<br> <br> <b>Nutation</b>: Is a small wobble of the earth axis with a 18.6 year orbit. This effect influences the position with a maximum of 17 arc-seconds and has the same effect for all objects. The nutation of planetary objects is corrected to get their correct equinox 2000 position. So stellar and non-stellar objects positions will be relatively correct.<br> <br> <b>Orbital elements</b>: Parameters (numbers) that determine an object's location and motion in its orbit about another object. In the case of solar-system objects such as comets and planets, one must ultimately account for perturbing gravitational effects of numerous other planets in the solar system (not merely the Sun). When such an account is made, one has what are called "osculating elements" (which are always changing with time and therefore must have a stated epoch of validity). Six elements are usually used to determine, uniquely, the orbit of an object in orbit about the Sun, with a seventh element (the epoch, or time, for which the elements are valid) added when planetary perturbations are allowed for; initial ("preliminary") orbit determinations shortly after the discovery of a new comet or minor planet (when very few observations are available) are usually "two-body determinations", meaning that only the object and the Sun are taken into account with, of course, the Earth in terms of observing perspective) work with only the following six orbital elements: time of perihelion passage (T) [sometimes taken instead as an angular measure called "mean anomaly", M]; perihelion distance (q), usually given in AU; eccentricity (e) of the orbit; and three angles (for which the mean equinox must be specified) the argument of perihelion (lower-case Greek letter omega), the longitude of the ascending node (upper-case Greek letter Omega), and the inclination (i) of the orbit with respect to the ecliptic.<br> <br> <b>Parallax error</b>: Error due to the geographical position on Earth. Mainly affecting the position of the Moon in the sky. Due to the great distances of the planets only a small error occurs, mainly in the position of our neighbours Mars and Venus.<br> <br> <b>Perihelion</b>: The point where (and when) an object orbiting the Sun is closest to the Sun.<br> <br> <b>Perturbations</b>: Disturbances of planet motion due to the gravitational forces between the planets.<br> <br> <b>Polar co-ordinates</b>: Astronomical co-ordinate system on the sky, which can be thought of as longitude/latitude on the Earth projected onto the sky. The two co-ordinates are right ascension and declination<br> <br> <b>Precession</b>: A slow but, relatively uniform motion of the Earth's rotational axis that causes changes in the co-ordinate systems used for mapping the sky. The Earth's axis of rotation does not always point in the same direction, due to gravitational tugs by the Sun and Moon (known as lunisolar precession) and by the major planets. This leads to a long-term shift of the ecliptic and the celestial equator. Commonly, to get a standard epoch, the co-ordinates are referred to as the equinox of data. This was before 1984 Besselian year B1950 = 1950, Jan. 0,9235 or Julian date 2433282.4235. Now the Julian epoch J2000 = 2000 Jan. 1.5 TD or 2000 Jan. 1 12:00 hours dynamical time or Julian date 2451545.0. The dynamical time (before 1984 emphemeris time) is in 1998 about 64 seconds ahead of universal time (UT).<br> <br> <b>RA</b>: Right ascension, one element of the astronomical co-ordinate system on the sky, which can be thought of as longitude on the Earth projected onto the sky. Right ascension is usually denoted by the lower-case Greek letter a=alpha and is measured eastward in hours, minutes, and seconds of time from the vernal equinox. There are 24 hours of right ascension, though the 24-hour line is always taken as 0 hours.<br> <br> <b>Sidereal time</b>: Is the hour angle of the vernal equinox, the ascending node of the ecliptic on the celestial equator. The daily motion of this point provides a measure of the rotation of the Earth with respect to the stars, rather then the Sun. Local mean sidereal time is computed from the current Greenwich Mean Sidereal Time plus an input offset in longitude (converted to a sidereal offset by the ratio 1.00273790935 of the mean solar day to the mean sidereal day.) Applying the equation of equinoxes, or nutation of the mean pole of the Earth from mean to true position, yields local apparent sidereal time. Astronomers use local sidereal time because it corresponds to the coordinate right ascension of a celestial body that is presently on the local meridian.<br> <br> <b>Topocentric</b>: Position in the sky as seen from the observers place on Earth. Topocentric co-ordinates differ from geocentric by the amount of parallax.<br> <br> <b>Vernal equinox</b>: The point on the celestial sphere where the Sun crosses the celestial equator moving northward, which corresponds to the beginning of spring in the northern hemisphere and the beginning of autumn in the southern hemisphere (in the third week of March). This point corresponds to zero (0) hours of right ascension.<br> <br> <b>UT</b>: Universal Time. A non-uniform of time which is the best realisation of solar time. The length of one second of Universal Time is not constant because the actual mean length depends on the rotation of the Earth and the apparent motion of the Sun. It is not possible to give long-term predictions. The difference between UT and DT are published in various yearbooks. See <a href="https://en.wikipedia.org/wiki/%CE%94T">Wikipedia delta T</a><br> <br> <b>UTC</b>: Co-ordinated Universal Time. Our clock time based on atomic clocks which are adjusted once or twice a year with leap seconds to be close (0.9 seconds or less) to Universal Time, UT. UT is based on rotation of the Earth.<br> <br> <a href="#dt_time">See also subject: Differences between Dynamical time and Universal time </a><br> <br> <a href="#index">Back to the index</a> <hr> <a name="dt_time"></a><big><b>Differences between Dynamical time and Universal time.</b></big><br> <br> The emphemeris time, ET, since 1984, the DT (TDT, Terrestrial Dynamical Time and TDB, Barycentric Dynamical Time), is the basis of the table for motion of the Sun, Moon, and planets without the influence of changes in the rotation of the Earth. Ephemeris of the planets is calculated on basis of this dynamic time. UT is based on solar time and therefore on the rotation of the Earth. This is leading to a small difference between DT and UT or Universal time. Secondly, there is a tiny difference between UT and UTC but, within one second. See also glossary.<br> <br> T is now based on the TAI International Atomic Time.<br> <br> To get correct Moon (about 30 arc seconds) and Sun ephemerides this small difference between our UTC based PC clock and DT should be corrected. HNSKY has an internal DT-UT table valid between -13000 and 17000. This feature <a href="https://en.wikipedia.org/wiki/%CE%94T">T</a> correction can be switched off and the time can be entered as DT or the <a href="https://en.wikipedia.org/wiki/%CE%94T">T</a> correction can be included in the time zone value. The <a href="https://en.wikipedia.org/wiki/%CE%94T">T</a> difference in 2000 is about 64 seconds. To correct this, the difference should be subtracted from the time zone. E.g. in the Netherlands for the time zone a value of 0.982 should be entered instead of +1.0. For East-USA a value of -5.018 instead of -5.0 should be entered. Here is a small table with the <a href="https://en.wikipedia.org/wiki/%CE%94T">T</a> differences of the past 300 years :<br> <br> <table width="192" cellspacing="0" cellpadding="4" border="1"> <tbody> <tr> <td align="center"><b>Date</b></td> <td align="center"><b>T</b></td> </tr> <tr> <td>1700</td> <td align="right">9 sec</td> </tr> <tr> <td>1750</td> <td align="right">13 sec</td> </tr> <tr> <td>1800</td> <td align="right">14 sec</td> </tr> <tr> <td>1850</td> <td align="right">7 sec</td> </tr> <tr> <td>1900</td> <td align="right">-3 sec</td> </tr> <tr> <td>1950</td> <td align="right">29 sec</td> </tr> <tr> <td>1955</td> <td align="right">31 sec</td> </tr> <tr> <td>1960</td> <td align="right">33 sec</td> </tr> <tr> <td>1965</td> <td align="right">36 sec</td> </tr> <tr> <td>1970</td> <td align="right">40 sec</td> </tr> <tr> <td>1975</td> <td align="right">46 sec</td> </tr> <tr> <td>1980</td> <td align="right">51 sec</td> </tr> <tr> <td>1985</td> <td align="right">54 sec</td> </tr> <tr> <td>1990</td> <td align="right">57 sec</td> </tr> <tr> <td>1995</td> <td align="right">61 sec</td> </tr> <tr> <td>2000</td> <td align="right">64 sec</td> </tr> <tr> <td>2005</td> <td align="right">65 sec</td> </tr> <tr> <td>2010</td> <td align="right">66 sec</td> </tr> <tr> <td>2015</td> <td align="right">68 sec</td> </tr> <tr> <td>2024</td> <td align="right">72 sec</td> </tr> </tbody> </table> <br> Estimates from: nasa.gov, see <a href="#webpages">webpage</a><br> <br> <a href="#glossary">See also subject: Glossary, technical terms and abbreviations</a><br> <br> <a href="#index">Back to the index</a> <hr> <a name="conversion"></a><big><b>Conversion orbital elements.</b></big><br> <br> For comets normally the perihelion time (T) and the semi-major axis (q) at perihelion is given. The orbital elements of asteroids are given for one given instant, called EPOCH and the MEAN ANOMALY. To convert these elements to the orbital elements (T) and (q) typically used for comets, the following simple calculations could be used:<br> <br> Asteroid Ceres(1)Epoch of elements: 1993 01 13.000<br> Eccent,(e) : 0.0764401<br> SemiMj Axis, (a) : 2.7678<br> Mean Anomaly, (M): 184.1845<br> <br> Calculate the semi-major axis (q) as follows:<br> <br> q = a * ( 1 - e) = 2.5562291<br> <br> The mean anomaly (M) increases per day:<br> <br> n = 0.98560767 /( a * squareroot( a ) ) = 0.21404378 [degrees /day]<br> <br> note: 0.98560767 is a fixed conversion factor<br> <br> Then calculate the number of days till the mean anomaly reaches 360 degrees equals 0 degrees:<br> <br> (360-184.1845) / 0.21404378 = 819 days. The perihelion date is then 95-4-14<br> <br> <a href="#index">Back to the index</a> <hr> <a name="database"><big><b>Format of the deep sky, asteroid, comet, supplement and star (DAT &amp; .290), database files.</b></big><br> <br> <b>1) Deep sky database</b><br> <br> The HNSKY deep sky database is based on the </a><a href="#sac">SAC 8.1 </a>, <a href="#credits">Wolfgang Steinicke's</a> REV NGC&amp;IC, Leda (GX), Kent Wallace SEC (PN) database, a few other sources and some personal corrections using the DSS2. It should contain all existing objects to magnitude 15.5 and galaxies if larger the 1 arc-min. It contains most of the <a href="#ngc">NGC, and IC</a> including all Messier objects. A total of 30000 deep sky objects. The deep sky databases are stored in a simple text file in CSV format and sorted on magnitude. Each line contains one object and the data is separated by a comma. This format is designed for speed and should normally not be modified by the users. To add your own object use the flexible but slower <a href="#supplements">supplements</a>. The visual descriptions of most deep sky objects are given, see <a href="#abbreviations">abbreviations</a>. The databases has three levels. The level can be set in main menu "OBJECTS".<br> <br> Format HNSKY deep sky database:<br> <br> &nbsp;&nbsp;&nbsp;RA[0..864000], DEC[-324000..324000], magn*10, name(s), type(s), brightness*10, length [0.1 min], width[0.1 min], orientation[degrees]<br> <br> <b>2) Supplement database</b><br> <br> These flexible database supplements can be used by users to enter additional deep sky objects, stars, labels and local horizons. Sorting on magnitude is not required. By using the internal HNSKY editor you can check the syntax. Due to the format, the speed is lower then for the standard deep sky database. HNSKY can become slow when the number of objects is above 10000. File names HNS_****.SUP. The format is defined in the first comment lines of the provided samples and in supplement files or <a href="#supplements">here</a>. Lines starting with ; are interpreted as comments. For creating a new large supplement a spreadsheet could be handy. The result should be saved as *.csv format.<br> <br> <b>3) Asteroid database</b><br> <br> CSV input file for asteroids. By using the internal HNSKY editor you can check the syntax. File name HNS_AST1.AST. The format is defined in the first comment lines of the provided samples and <a href="#asteroid_format">here</a>. Lines starting with ; are interpreted as comments.<br> <br> <b>4) Comet database</b><br> <br> CSV input file for orbital element of comets. By using the internal HNSKY editor you can check the syntax. File name HNS_COM1.CMT. The format is defined in the first comment lines of the provided samples and <a href="#comet_format">here</a>. Lines starting with ; are interpreted as comments.<br> <br> <b>5) Format of the .290 star database.</b><br> <br> The .290 format divides the sky in 290 area's and 290 corresponding files with the extension .290. It is intended for larger star databases.<br> <br> <b>The 290 format:</b> Each star is stored in a record of 5 , 6 , 7 or 9, 10, 11 bytes. All types have the same 110 byte header with textual description and the record size binary stored in byte 110. The short record versions of 5, 6 and 7 bytes have no star designation and get later the IAU designation based on the recorded RA, DEC position as hhmmss.s+ddmmss<br> <br> Basic record formats:<br> <br> <b>290-11</b>, standard record size of 11 bytes for one star including it's designation:<br> <br> <font size="2" face="courier"> &nbsp;&nbsp;&nbsp;&nbsp;type<br> &nbsp;&nbsp;&nbsp;&nbsp;hnskyhdr290 = packed record<br> &nbsp;&nbsp;&nbsp;&nbsp;nr290: integer; {star number containing the Tycho/GSC or UCAC4 designation}<br> &nbsp;&nbsp;&nbsp;&nbsp;ra7&nbsp; : byte;<br> &nbsp;&nbsp;&nbsp;&nbsp;ra8&nbsp; : byte;<br> &nbsp;&nbsp;&nbsp;&nbsp;ra9&nbsp; : byte;<br> &nbsp;&nbsp;&nbsp;&nbsp;dec7 : byte;<br> &nbsp;&nbsp;&nbsp;&nbsp;dec8 : byte;<br> &nbsp;&nbsp;&nbsp;&nbsp;dec9 : shortint; (skipped in 290-10 and 290-9 version}<br> &nbsp;&nbsp;&nbsp;&nbsp;mag0 : shortint; {skipped in 290-10 version}<br> &nbsp;&nbsp;&nbsp;&nbsp;end;<br> </font> <br> <b>290-7</b>, short record size of 7 bytes for one star without designation:<br> <font size="2" face="courier"> &nbsp;&nbsp;&nbsp;&nbsp;type<br> &nbsp;&nbsp;&nbsp;&nbsp;hnskyhdr290 = packed record<br> &nbsp;&nbsp;&nbsp;&nbsp;nr290: integer; {star number containing the Tycho/GSC or UCAC4 designation}<br> &nbsp;&nbsp;&nbsp;&nbsp;ra7&nbsp; : byte;<br> &nbsp;&nbsp;&nbsp;&nbsp;ra8&nbsp; : byte;<br> &nbsp;&nbsp;&nbsp;&nbsp;ra9&nbsp; : byte;<br> &nbsp;&nbsp;&nbsp;&nbsp;dec7 : byte;<br> &nbsp;&nbsp;&nbsp;&nbsp;dec8 : byte;<br> &nbsp;&nbsp;&nbsp;&nbsp;dec9 : shortint; {skipped in 290-6 and 290-5 version}<br> &nbsp;&nbsp;&nbsp;&nbsp;mag0 : shortint; {skipped in 290-6 version}<br> &nbsp;&nbsp;&nbsp;&nbsp;end;<br> </font> <br> The RA is stored as a 3 bytes word. The DEC position is stored as a two's complement (=standard), three bytes integer. The resolution of this three byte storage will be for RA: 360*60*60/((256*256*256)-1) = 0.077 arc seconds. For the DEC value it will be: 90*60*60/((128*256*256)-1) = 0.039 arc seconds. The magnitude is stored in one short-integer. Used range -127 to 127, equal -12,7 to 12,7. Stars with a magnitude 12.8 and higher are stored as -12.6 and lower.<br> <br> <font size="2" face="Courier"> &nbsp;&nbsp;Example of star Sirius RA and DEC position:<br> &nbsp;&nbsp;The RA position is stored as C3 06 48 equals: (195+6*256+72*256*256)<b>*24</b>/((256*256*256)-1)=6.75247662 hours equals: 6:45:8.9<br> &nbsp;&nbsp;The DEC position is stored as D7 39 E8, equals: 215 57 -24. The DEC is then (215+57*256-24*256*256)<b>*90</b>/((128*256*256)-1)=-16.7161401 degrees equals -16d 42 58<br> </font> <br> <b> 290-10 and 290-6 versions.</b> Since the stars are sorted from bright to faint, a "0.1" magnitude change of a sorted group can be stored in one preceding header record containing a dummy RA position 24:00:00 ( $FFFFFF) and the magnitude in the dec9 shortint with range -127 to 127. The stars following the header record do not need a magnitude byte/shortint. Stars with a magnitude of 12.8 and higher are stored as -12.6 and lower.<br> <br> <b>290-9 and 290-5 versions.</b> These are the latest and most compact star database versions. Stars are sorted from bright to faint in the "0.1" steps. Within the magitude range, the stars are additional sorted in DEC. For a series of stars with the same DEC9 value, a header record is preceding containing the DEC9 value stored at location DEC7. Since the stars are already sorted in 290 areas, the number of DEC9 values is already limited by a factor 18.<br> <br> 290-5 header record example: FF FF FF 20 06 This indicates the following records have a DEC9 value of 20 -128 offset and a magnitude of 06 - 16 offset divided by 10 equals -1.0 (new method, -16 offset) .<br> 290-6 header record example: FF FF FF ?? ?? 16 This indicates the following records have a magnitude of 16 equals 1.6 (old magnitude method)<br> <br> The shorter records methods become only space efficient for very large star collection of a few million stars. In these large collections many stars can be found with the same magnitude and DEC9 shortint. The Gaia database is only issued in the 290-5 format of 5 bytes per star.<br> <br> <b>Designation: </b>The star designation is stored in 32 bit integer named NR290. If the NR290 integer is positive, it contains an UCAC4 number. For UCAC4 the star zone is added as a multiply of $100000.&nbsp; This allows $800 or 2048 zones and&nbsp; $100000 or 1.048.576 stars. The UCAC4 contains maximum 286.833 stars in a zone and has 900 zones.<b> <br> <br> </b>UCAC4 decoding:<br> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp; nr_regio:=(nr32store and $FFF00000) shr 20;{every 00 is 8 bits, so 5 zeros is 20 bits shift}<br> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp; nr_star:= (nr32store and $000FFFFF); <br> <br> In case the NR290 integer is negative, the integer contains the Tycho/GSC label. After making the integer positive, the regional star number is stored in the lowest 2 bytes, the GSC/Tycho star region (1..9537) is stored in the highest 2 bytes except that if bit $40000000 is true, the Tycho specific extension is 2, else the Tycho extension is 1. The highest bit of star number at $00008000 is used for the Tycho-2 extension 3.<br> <br> Tycho2 decoding<br> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp; nr_regio:=((-nr32store) and $3FFF0000) shr 16;<br> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp; nr_star:=(-nr32store) and $7FFF;<br> <br> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp; if (((-nr32store) and $40008000)&gt;0) then&nbsp; {tycho extensions}<br> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp; begin<br> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; if (((-nr32store) and $40000000)&gt;0) then<br> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; naam2:=naam2+'-2'<br> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; else<br> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; naam2:=naam2+'-3'; <br> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp; end;<br> <br> The sky is divided in 290 areas of equal surface except for the poles which are half of that size. The stars are stored in these 290 separate files and sorted from bright to faint. Each file starts with a header of 110 bytes of which the first part contains a textual description and the last byte contains the record size, 6, 7, 10 or 11 bytes. The source of the utility program to make star databases is provided.<br> <br> The 290 area's look as follows:<br> <br> <img style="float: left; margin-right: 8pt; max-width: 40%;" alt="290 areas" src="hns_290f0.png"> <img style="float: right; margin-left: 0pt; max-width: 40%;" alt="290 areas from south pole" src="hns_290f1.png"><br clear="all"> <br> The 290 area's:<br> <br> The areas are based on an mathematical method described in a paper of the PHILLIPS LABORATORY called "THE DIVISION OF A CIRCLE OR SPHERICAL SURFACE INTO EQUAL-AREA CELLS OR PIXELS" by Irving I. Gringorten Penelope J. Yepez on 30 June 1992<br> <br> First circles of constant declination are assumed. The first sphere segment defined by circle with number 1 has a height h1 from the pole and a surface of 2*pi*h1.<br> <br> If the second circle of constant declination has a sphere segment with a height of 9*h1 then the surface area of the second sphere segment is nine times higher equal 2*pi*9*h1. If the area between circle 1 en 2 is divided in 8 segments then these eight have the same area as the area of the first segment. The same is possible for the third circle by diving it in 16 segments, then in 24, 32, 40, 48, 56, 64 segments. The area of the third segment is 2*pi*25*h1, where 25 equals 1+8+16. So the sphere segments have a height of h1, 9*h1, 25*h1, 49*h1. The height of h1=1-sin(declination). All areas are equal area but rectangle. In HNSKY all area's are a combination of two except for the polar areas to have a more square shape especially around the equator. The south pole is stored in file 0101.290 Area A2 and A3 are stored in file 02_01.290, area A4 and A5 are stored in file 0202.290. The distances between the circles is pretty constant and around 10 to 12 degrees. The distance between the area centres is around 15 degrees maximum.<br> <br> The declinations are calculated by arcsin (1-1/289), arcsin(1-(1+8)/289), arcsin (1-(1+8+16)/289), arcsin(1-(1+8+16+24)/289)...<br> <br> In a table:<br> <br> <table width="525" cellspacing="0" cellpadding="4" border="1"> <tbody> <tr> <td align="center"><b>Area</b></td> <td align="center"><b>ring</b></td> <td align="center"><b>declination_min</b></td> <td align="center"><b>declination_max</b></td> <td align="center"><b>Areas_equal_size</b></td> <td align="center"><b>HNSKY_area's</b></td> </tr> <tr> <td>A1</td> <td>0-1</td> <td align="right">-90</td> <td align="right">-85.23224404</td> <td align="right">1</td> <td align="right">1</td> </tr> <tr> <td>A2-A8</td> <td>1-2</td> <td align="right">-85.23224404</td> <td align="right">-75.66348756</td> <td align="right">8</td> <td align="right">4</td> </tr> <tr> <td><br> </td> <td>2-3</td> <td align="right">-75.66348756</td> <td align="right">-65.99286637</td> <td align="right">16</td> <td align="right">8</td> </tr> <tr> <td><br> </td> <td>4-5</td> <td align="right">-65.99286637</td> <td align="right">-56.14497387</td> <td align="right">24</td> <td align="right">12</td> </tr> <tr> <td><br> </td> <td>6-7</td> <td align="right">-56.14497387</td> <td align="right">-46.03163067</td> <td align="right">32</td> <td align="right">16</td> </tr> <tr> <td><br> </td> <td>7-8</td> <td align="right">-46.03163067</td> <td align="right">-35.54307745</td> <td align="right">40</td> <td align="right">20</td> </tr> <tr> <td><br> </td> <td>8-9</td> <td align="right">-35.54307745</td> <td align="right">-24.53348115</td> <td align="right">48</td> <td align="right">24</td> </tr> <tr> <td><br> </td> <td>7-8</td> <td align="right">-24.53348115</td> <td align="right">-12.79440589</td> <td align="right">56</td> <td align="right">28</td> </tr> <tr> <td><br> </td> <td>8-9</td> <td align="right">-12.79440589</td> <td align="right">0</td> <td align="right">64</td> <td align="right">32</td> </tr> <tr> <td><br> </td> <td>9-10</td> <td align="right">0</td> <td align="right">12.79440589</td> <td align="right">64</td> <td align="right">32</td> </tr> <tr> <td><br> </td> <td>10-11</td> <td align="right">12.79440589</td> <td align="right">24.53348115</td> <td align="right">56</td> <td align="right">28</td> </tr> <tr> <td><br> </td> <td>11-12</td> <td align="right">24.53348115</td> <td align="right">35.54307745</td> <td align="right">48</td> <td align="right">24</td> </tr> <tr> <td><br> </td> <td>12-13</td> <td align="right">35.54307745</td> <td align="right">46.03163067</td> <td align="right">40</td> <td align="right">20</td> </tr> <tr> <td><br> </td> <td>13-14</td> <td align="right">46.03163067</td> <td align="right">56.14497387</td> <td align="right">32</td> <td align="right">16</td> </tr> <tr> <td><br> </td> <td>14-15</td> <td align="right">56.14497387</td> <td align="right">65.99286637</td> <td align="right">24</td> <td align="right">12</td> </tr> <tr> <td><br> </td> <td>15-16</td> <td align="right">65.99286637</td> <td align="right">75.66348756</td> <td align="right">16</td> <td align="right">8</td> </tr> <tr> <td><br> </td> <td>16-17</td> <td align="right">75.66348756</td> <td align="right">85.23224404</td> <td align="right">8</td> <td align="right">4</td> </tr> <tr> <td><br> </td> <td>17-18</td> <td align="right">85.23224404</td> <td align="right">90</td> <td align="right">1</td> <td align="right">1</td> </tr> <tr> <td><br> </td> <td><br> </td> <td><br> </td> <td align="right"><b>Total</b></td> <td align="right"><b>578</b></td> <td align="right"><b>290</b></td> </tr> </tbody> </table> <br> <b>6) Format of the .dat star databases (SAO_HSKY.DAT and PPM_HSKY.DAT):</b><br> <br> The internal <a href="file:///C:/hnsky.code/help/uk/hnsky.htm#star_catalogues">HNSKY star databases</a> comes in two binary formats. The .290 format and a single file type with extension .dat This type is intended for databases up to about a half million stars. File names ***_HSKY.DAT. In this format the <a href="file:///C:/hnsky.code/help/uk/hnsky.htm#spectral">spectral</a> code is is available. Examples, The SAO (sao_hnsky.dat) up to to about magnitude 9.5 and the PPM (ppm_hnsky.dat) star database complete to about magnitude 10.<br> <br> <b>The .dat record format: </b><br> <br> <font size="2" face="courier"> &nbsp;&nbsp;&nbsp;&nbsp;type<br> &nbsp;&nbsp;&nbsp;&nbsp;hnskyhdr = record<br> &nbsp;&nbsp;&nbsp;&nbsp;nr1&nbsp; : byte;<br> &nbsp;&nbsp;&nbsp;&nbsp;nr2&nbsp; : byte;<br> &nbsp;&nbsp;&nbsp;&nbsp;nr3&nbsp; : byte;<br> &nbsp;&nbsp;&nbsp;&nbsp;ra7&nbsp; : byte;<br> &nbsp;&nbsp;&nbsp;&nbsp;ra8&nbsp; : byte;<br> &nbsp;&nbsp;&nbsp;&nbsp;ra9&nbsp; : byte;<br> &nbsp;&nbsp;&nbsp;&nbsp;dec7&nbsp;: byte;<br> &nbsp;&nbsp;&nbsp;&nbsp;dec8&nbsp;: byte;<br> &nbsp;&nbsp;&nbsp;&nbsp;dec9&nbsp;: shortint;<br> &nbsp;&nbsp;&nbsp;&nbsp;mag0&nbsp;: shortint;<br> &nbsp;&nbsp;&nbsp;&nbsp;spec0: byte;<br> &nbsp;&nbsp;&nbsp;&nbsp;end;<br> </font> <br> The record size for one star is then 11 bytes. Stars in the files are sorted from bright to faint.<br> <br> The SAO/PPM number is stored in three bytes. Range 0 to 256^3-1. The RA position is stored in three bytes. Range 0 to 256^3-1, equals 0 to 2*pi or 24 hours. The DEC is stored as a three bytes integer (two's complement), so one bit is used for the polarity sign. Used range - 128*256*256-1 to +128*256*256-1, equals -pi/2 to pi/2 or -90 to 90 degrees<br> <br> The resolution of this three byte storage will be for RA: 360*60*60/((256*256*256)-1) = 0.077 arc seconds. For the DEC value it will be: 90*60*60/((128*256*256)-1) = 0.039 arc seconds<br> <br> The magnitude is stored in one byte or shortint, Used range -127 to 127, equal -12,7 to 12,7. Stars with a magnitude 12.8 and higher are stored as -12.6 and lower.<br> <br> The <a href="file:///C:/hnsky.code/help/uk/hnsky.htm#spectral">spectral</a> type is stored in one byte as follows:<br> <br> <font size="2" face="courier"> &nbsp;&nbsp;&nbsp;&nbsp;const spectral<br> &nbsp;&nbsp;&nbsp;&nbsp;array[0..1,0..15] of char=(('0','1','2','3','4','5','6','7','8','9','A','B','C','E','+',' '),<br> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;('O','B','A','F','G','K','M','R','N','S','C','W','P','Q','+',' '));<br> &nbsp;&nbsp;&nbsp;&nbsp;spectr[0]:=spectral[1,spec0 shr 4]; highest 4 bits of spec0 define main spectral type<br> &nbsp;&nbsp;&nbsp;&nbsp;spectr[1]:=spectral[0,spec0 and $0F];lowest 4 bits of spec0 define range 0...9..<br> </font> <br> The first 10 records+1 (111 bytes) are not used for star data, but contain a file description in txt/ASCII. The stars are sorted from bright to faint.<br> <br> The size of the database is in principle unlimited, but a bigger database will slow down the build-up of the display. The program reads the database from disk and after some calculations the data is written directly to the window. Therefore the memory requirements of the program are very low.<br> <br> Star proper motion is not implemented. Epoch is corrected by issuing every few years a new version with a proper epoch.<br> <br> Here is a example how Sirius is stored in SAO_HSKY.DAT:<br> <br> <font size="2" face="courier"> &nbsp;&nbsp;&nbsp;&nbsp;Sirius is SAO 151881, stored at position 6F as hex 49 51 02 (reverse)<br> <br> &nbsp;&nbsp;&nbsp;&nbsp;The RA position is stored as C3 06 48 equals: (195+6*256+72*256*256)<b>*24</b>/((256*256*256)-1)=6.75247662 hours equals: 6:45:8.9<br> &nbsp;&nbsp;&nbsp;&nbsp;The DEC position is stored as D7 39 E8, equals: 215 57 -24. The DEC is then (215+57*256-24*256*256)<b>*90</b>/((128*256*256)-1)=-16.7161401 degrees equals -16d 42 58<br> </font> <br> So DEC is stored as a two's complement (=standard), three bytes integer. The algebraic value of the two's complement can be found of the summing weight of sign bit (+ or - 256*256*128 ) and other bits added positively only.<br> <br> For example +90 degrees will be stored as FF FF 7F (reverse) and -90 degrees will be stored as 01 00 80 (reverse).<br> Reconstruction of -90 degrees is then (01 + 00*256 -128 *256*256)*90/((128*256*256)-1).<br> Or as ( 1*(2^0) + 0*(2^1)+ 0*(2^2)....0*(2^22)+ 1 * -(2^23) )*90/((128*256*256)-1)<br> <br> The reconstruction of RA and DEC could be done as follows:<br> <br> <font size="2" face="courier"> &nbsp;&nbsp;&nbsp;&nbsp;ra2:=(ra7 + ra8 shl 8 +ra9 shl 16)*(pi*2 /((256*256*256)-1));<br> &nbsp;&nbsp;&nbsp;&nbsp;dec2:=((dec9 shl 16)+(dec8 shl8)+dec7)*(pi*0.5/((128*256*256)-1));<br> </font> <br> <a href="#index">Back to the index</a> <hr> <a name="supplements"></a><big><b>Supplements for deep sky objects, stars, lines, logbook and local horizon.</b></big><br> <br> These flexible database supplements can be used by users to enter additional deep sky objects, stars, labels and local horizons. Sorting on magnitude is not required. By using the internal HNSKY editor you can check the syntax. Due to the format, the speed is lower then for the standard deep sky database. HNSKY can become slow when the number of objects is above 10000. File names HNS_****.SUP. The format is defined in the first comment lines of the provided samples and in supplement files. Lines starting with ; are interpreted as comments. For creating a new large supplement a spreadsheet could be handy. The result should be saved as *.csv format.<br> <br> HNSKY can handle two supplements. They can contain a mixture of deep sky objects, stars, constellation lines, local horizon and <a href="#logbook">logbook</a> markers. Supplements are ordinary TXT files and can be modified inside HNSKY or any other editor. There are several examples available at the <a href="#webpages"> HNSKY webpage</a>. A deep sky object could be entered as following line:<br> <br> 02,22.5,0,+42,21,0,101,NGC891,GX;old_position,131,120,20,22<br> <br> The position of the galaxy NGC891 is at RA 02:22.5 and DEC +42 d 21. The magnitude is 10.1 and brightness is 13.1. The size is 12.0 x 2.0 arc minutes. The PA angle 22 degrees.<br> <br> Under the editor tools menu there are two options to import a list of objects as a supplement.&nbsp; Copy a piece of text containing deep sky names (e.g. webpage) and paste it. Any recognisable object name will be filtered out and object info from the HNSKY database will be added. It can be pasted as a label or&nbsp; supplement line. Since HNSKY completes the data it is advisable to select first the deep sky database 3.<br> <br> <br> <font size="2" face="courier"> General description of supplements:<br> <br> HNSKY supplement file for stars, deep sky objects and RA/DEC, AZ/Alt lines.<br> <br> Deep sky mode:<br> &nbsp;&nbsp; As soon the brightness value is given, (if unknown enter 999) the entry will<br> &nbsp;&nbsp; be displayed as a deep sky object.<br> <br> Star mode:<br> &nbsp;&nbsp; As soon brightness=0 or a text description is given or nothing at brightness<br> &nbsp;&nbsp; field the entry will be displayed as a star. The brightness field can be used for<br> &nbsp;&nbsp; additional information. If the brightness text is too long, split it with<br> &nbsp;&nbsp; the symbols ; or / or |. If the object is found, this the full text will be<br> &nbsp;&nbsp; displayed in the status bar, however only the first part will be displayed in<br> &nbsp;&nbsp; the screen top&amp;left message.<br> <br> Line mode:<br> &nbsp;&nbsp; 1) RA/DEC&nbsp; To draw RA, DEC lines enter brightness=-2 to move to and -1 to draw<br> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;line to. The line color is defined by the magnitude see below.<br> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;To enter a RA, DEC based label, enter brightness=-99. This will also<br> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;disable the hint. if the RA, DEC based label requires an hints enter<br> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; brightness=-98.<br> <br> &nbsp;&nbsp; 2) AZ/ALT&nbsp; To draw azimuth, altitude lines enter brightness=-4 to move to and<br> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;-3 to draw line to.<br> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;The line color is defined by the magnitude. See below.<br> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;To draw circles in azimuth, altitude enter brightness=-5<br> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;To get a azimuth/altitude based label+hint enter the name.<br> <br> &nbsp;&nbsp;&nbsp;In the RA/DEC or AZ/ALT line mode the color can be set by the magnitude parameter.<br> &nbsp;&nbsp;&nbsp;mag value -20 is the horizon color, -21 is bright deep sky, -22 medium, -23 faint,<br> &nbsp;&nbsp; -24 is constellation boundary color, -25 is cross_hair and finally else<br> &nbsp;&nbsp; (mag=0 or empty) constellation color.<br> <br> <br> All numbers are read as floating point. So RA of 23:30:00 could be entered as<br> 23,30,0 or as 23.5,0,0 or as 0,1410,0&nbsp;&nbsp; (RA minutes is 23.5*60)<br> Dec sign will be based on + or - sign of Dec hours. + or - sign of minutes and<br> seconds are ignored.<br> Lines starting with a semicolon = ; will be ignored.<br> <br> General format:<br> <br> RA[0..24.0],RAM[0..60.0],RAS[0..60.0],<br> &nbsp;&nbsp; DEC[-90.0..90.0],DECM[0..60.0],DECS[0..60.0],<br> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp; mag[*10],<br> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; name/secondname[ASCII],<br> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; type[ASCII],<br> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; brightness[*10],<br> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; length[min*10],<br> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; width[min*10],<br> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;orientation[degrees]<br> </font> <br> <a href="#index">Back to the index</a> <hr> <a name="comet_format"></a><big><b>Format of the comet file</b></big><br> <br> ASCII input file for orbital element of comets. By using the internal HNSKY editor you can check the syntax. File name HNS_COM1.CMT. The format is defined in the first comment lines of the provided samples. Lines starting with ; are interpreted as comments.<br> <br> <font size="2" face="Courier"> ;HNSKY comet file<br> ;Data and update (TheSky format) from : http://www.minorplanetcenter.org/iau/Ephemerides/Soft06.html<br> ;<br> ;Comet name&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp;&nbsp;Equinox&nbsp;&nbsp;&nbsp; Peri-&nbsp;&nbsp;&nbsp; Peri-&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Eccen-&nbsp;&nbsp;&nbsp; Argument&nbsp;&nbsp; Longitude Orbit&nbsp;&nbsp;&nbsp;&nbsp; Abs. Actv.&nbsp; Second<br> ;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;of&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; helion&nbsp;&nbsp; helion&nbsp;&nbsp;&nbsp;&nbsp; tricity&nbsp;&nbsp;&nbsp;&nbsp; of&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; of the&nbsp;&nbsp;&nbsp; incli&nbsp;&nbsp;&nbsp;&nbsp; magn.&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; name<br> ;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; orbital&nbsp;&nbsp;&nbsp; epoch&nbsp;&nbsp;&nbsp; distance&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; perihelion ascending nation<br> ;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; elements&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; node<br> ;<br> ;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; [yyyy]yyyymmdd.dddd&nbsp;&nbsp; q [ae]&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; e&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; w&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; ohm&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; i&nbsp;&nbsp;&nbsp;&nbsp; H0&nbsp;&nbsp;&nbsp; k<br> ;--------------------------------------+----+--------------+----------+---------+---------+---------+---------+-----+-----+----------<br> ;Version 20 september 2015<br> C/1995 O1 (Hale-Bopp)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; |2000|19970329.4821 | 0.936227 |0.994916 |130.8522 |282.3114 | 89.4617 |-2.0 |10.0 | MPC 75007<br> P/1996 R2 (Lagerkvist)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; |2000|20190213.0392 | 2.597694 |0.311863 |333.2221 | 40.0591 |&nbsp; 2.6012 |11.5 |10.0 | NK 1615<br> P/1997 B1 (Kobayashi)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; |2000|20220325.8153 | 2.044545 |0.761190 |183.3264 |329.0300 | 12.3788 |15.0 | 5.0 | MPC 30063<br> P/1998 QP54 (LONEOS-Tucker)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; |2000|20151225.9939 | 1.886609 |0.551345 | 30.6168 |341.5993 | 17.6491 |15.0 | 5.0 | CCO 16<br> P/1998 VS24 (LINEAR)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; |2000|20180120.0261 | 3.436048 |0.241817 |245.1264 |159.0593 |&nbsp; 5.0227 |13.0 | 5.0 | MPC 75703<br> P/1999 D1 (Hermann)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; |2000|20121218.6667 | 1.644594 |0.714164 |174.0486 |348.7473 | 21.3549 |15.0 |10.0 | NK 1780<br> </font> <br> See also:<br> <br> <a href="#comet">Comet and asteroid (minor planet) ephemerides:</a><br> <a href="#conversion">Conversion orbital elements</a><br> <br> <a href="#index">Back to the index</a> <hr> <a name="asteroid_format"></a><big><b>Format of the asteroid file</b></big><br> <br> ASCII input file for asteroids. By using the internal HNSKY editor you can check the syntax. File name HNS_AST1.AST. The format is defined in the first comment lines of the provided samples. Lines starting with ; are interpreted as comments.<br> <br> <font size="2" face="Courier"> ;HNSKY asteroid file<br> ;Data and update (TheSky format) from : http://www.minorplanetcenter.org/iau/Ephemerides/Soft06.html<br> ;&nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp; &nbsp;&nbsp;&nbsp;&nbsp;&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp; The following letter<br> ;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; is non relevant. Used&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <br> ;Asteroid name&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Epoch&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Eccen-&nbsp;&nbsp;&nbsp;&nbsp; Semi&nbsp;&nbsp;&nbsp;&nbsp; Orbit&nbsp;&nbsp; Longitude Argument Equinox Mean&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Abs.&nbsp; Magn&nbsp;&nbsp; by HNSKY internally<br> ;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; tricity&nbsp;&nbsp;&nbsp; major&nbsp;&nbsp;&nbsp; incli&nbsp;&nbsp; of the&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; of&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; of&nbsp;&nbsp;&nbsp; anomoly&nbsp;&nbsp; magn. slope&nbsp; for skipping faint asteroids.<br> ;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; axis&nbsp;&nbsp;&nbsp;&nbsp; nation&nbsp; ascending&nbsp; peri-&nbsp;&nbsp; orbital&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; para-&nbsp; Magnitude range&nbsp; [A..Z]<br> ;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; node&nbsp;&nbsp;&nbsp;&nbsp; helion&nbsp;&nbsp; elements&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; meter&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; equals [0..25]<br> ;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; will be overwritten&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <br> ;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; yyyy mm dd.ddd&nbsp;&nbsp;&nbsp; e&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; a [ae]&nbsp;&nbsp;&nbsp;&nbsp; i&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; ohm&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; w&nbsp;&nbsp;&nbsp;&nbsp; [yyyy]&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; H&nbsp;&nbsp;&nbsp;&nbsp; G&nbsp;&nbsp;&nbsp; next time<br> ;--------------------+--------------+----------+--------+--------+---------+---------+-----+----------+-----+-----<br> &nbsp;&nbsp;&nbsp;&nbsp; 1 Ceres&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; |2014 12 09.000|0.075823&nbsp; |2.767506| 10.5934| 80.3293 | 72.5220 | 2000| 95.9892&nbsp; | 3.34| 0.12|I5<br> &nbsp;&nbsp;&nbsp;&nbsp; 2 Pallas&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; |2014 12 09.000|0.231274&nbsp; |2.771606| 34.8410|173.0962 |309.9303 | 2000| 78.2287&nbsp; | 4.13| 0.11|K3<br> &nbsp;&nbsp;&nbsp;&nbsp; 3 Juno&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; |2014 12 09.000|0.255448&nbsp; |2.670700| 12.9817|169.8712 |248.4100 | 2000| 33.0772&nbsp; | 5.33| 0.32|K8<br> &nbsp;&nbsp;&nbsp;&nbsp; 4 Vesta&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; |2014 12 09.000|0.088740&nbsp; |2.361793|&nbsp; 7.1404|103.8514 |151.1984 | 2000| 20.8639&nbsp; | 3.20| 0.32|G3<br> &nbsp;&nbsp;&nbsp;&nbsp; 7 Iris&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; |2014 12 09.000|0.230794&nbsp; |2.386660|&nbsp; 5.5227|259.6207 |145.4612 | 2000| 72.1487&nbsp; | 5.51| 0.15|L2<br> </font> <br> See also:<br> <br> <a href="#comet">Comet and asteroid (minor planet) ephemerides:</a><br> <br> <a href="#index">Back to the index</a> <hr> <a name="telescope_view"></a><big><b>Visual and photographic field of view.</b></big><br> <br> Visual field of view:The true angular diameter of the field as seen true the telescope is mainly depending on the magnification and the apparent field of the eyepc. For a plssl with apparent field of about 50 the angular diameter is equal to 50/magnification.<br> <br> Visual field of view for a telescope with a focal length of 2000 mm:<br> <br> <table width="500" cellspacing="0" cellpadding="4" border="1"> <tbody> <tr> <td><b> Eye PC <br> </b></td> <td><b> Magnification <br> </b></td> <td><b> Type Plssl (50) <br> </b></td> <td><b> Type Wide angle (67) </b></td> </tr> <tr> <td align="center">40 mm</td> <td align="center">50 x</td> <td align="center">53'(44)</td> <td align="center">80'</td> </tr> <tr> <td align="center">25 mm</td> <td align="center">80 x</td> <td align="center">38'</td> <td align="center">50'</td> </tr> <tr> <td align="center">20 mm</td> <td align="center">100 x</td> <td align="center">30'</td> <td align="center">40'</td> </tr> <tr> <td align="center">16 mm</td> <td align="center">125 x</td> <td align="center">24'</td> <td align="center">32'</td> </tr> <tr> <td align="center">10 mm</td> <td align="center">200 x</td> <td align="center">15'</td> <td align="center">20'</td> </tr> <tr> <td align="center">7 mm</td> <td align="center">286 x</td> <td align="center">10'</td> <td align="center">14'</td> </tr> </tbody> </table> <br> Visual field of view for a telescope with a focal length of 1250 mm:<br> <br> <table width="500" cellspacing="0" cellpadding="4" border="1"> <tbody> <tr> <td><b> Eye PC <br> </b></td> <td><b> Magnification <br> </b></td> <td><b> Type Plssl (50) <br> </b></td> <td><b> Type Wide angle (67) </b></td> </tr> <tr> <td align="center">40 mm</td> <td align="center">31 x</td> <td align="center">85'(44)</td> <td align="center">130'</td> </tr> <tr> <td align="center">25 mm</td> <td align="center">50 x</td> <td align="center">60'</td> <td align="center">80'</td> </tr> <tr> <td align="center">20 mm</td> <td align="center">63 x</td> <td align="center">48'</td> <td align="center">64'</td> </tr> <tr> <td align="center">16 mm</td> <td align="center">78 x</td> <td align="center">38'</td> <td align="center">52'</td> </tr> <tr> <td align="center">10 mm</td> <td align="center">125 x</td> <td align="center">24'</td> <td align="center">32'</td> </tr> <tr> <td align="center">7 mm</td> <td align="center">179 x</td> <td align="center">17'</td> <td align="center">22'</td> </tr> </tbody> </table> <br> Visual field of view for a telescope with a focal length of 580 mm:<br> <br> <table width="500" cellspacing="0" cellpadding="4" border="1"> <tbody> <tr> <td><b> Eye PC <br> </b></td> <td><b> Magnification <br> </b></td> <td><b> Type Plssl (50) <br> </b></td> <td><b> Type Wide angle (67) </b></td> </tr> <tr> <td align="center">40 mm</td> <td align="center">15 x</td> <td align="center">176'(44)</td> <td align="center">286'(exit pupil 6.7 mm)</td> </tr> <tr> <td align="center">25 mm</td> <td align="center">23 x</td> <td align="center">130'</td> <td align="center">175'(exit pupil 6 mm)</td> </tr> <tr> <td align="center">20 mm</td> <td align="center">29 x</td> <td align="center">103'</td> <td align="center">139'</td> </tr> <tr> <td align="center">16 mm</td> <td align="center">36 x</td> <td align="center">83'</td> <td align="center">112'</td> </tr> <tr> <td align="center">10 mm</td> <td align="center">58 x</td> <td align="center">52'</td> <td align="center">69'</td> </tr> <tr> <td align="center">7 mm</td> <td align="center">83 x</td> <td align="center">36'</td> <td align="center">48'</td> </tr> </tbody> </table> <br> Note: 40 mm, 1-1/4" Plssl have a field of view of 44 only.<br> <br> Photographic field of view: For a telescope with a 24 mm sensor, the size of photographed part of the sky will be as follows:<br> <br> <table cellspacing="0" cellpadding="4" border="1"> <tbody> <tr> <td><b> Focal length instrument <br> </b></td> <td><b> Photographic field of view for 24 mm sensor <br> </b></td> </tr> <tr> <td align="center">50mm</td> <td align="center">1600' (' = arc min)</td> </tr> <tr> <td align="center">100mm<br> </td> <td align="center"> 800'</td> </tr> <tr> <td align="center">200mm</td> <td align="center"> 400'</td> </tr> <tr> <td align="center">500mm</td> <td align="center"> 160'</td> </tr> <tr> <td align="center">1000mm</td> <td align="center"> 80'</td> </tr> <tr> <td align="center">2000mm</td> <td align="center"> 40'</td> </tr> </tbody> </table> <br> Table of visual limiting magnitudes under a very dark sky:<br> <br> <table cellspacing="0" cellpadding="4" border="1"> <tbody> <tr> <td><b> Telescope aperture <br> </b></td> <td><b> Limiting magnitude (Visual) </b></td> </tr> <tr> <td align="center">7x50 Bin.</td> <td align="center"> 9</td> </tr> <tr> <td align="center">10x70 Bin.</td> <td align="center"> 10<br> </td> </tr> <tr> <td align="center"> 6 inch<br> </td> <td align="center"> 14.1<br> </td> </tr> <tr> <td align="center">8 inch<br> </td> <td align="center"> 14.7<br> </td> </tr> <tr> <td align="center"> 10 inch<br> </td> <td align="center"> 15.1<br> </td> </tr> <tr> <td align="center">12 inch<br> </td> <td align="center"> 15.4<br> </td> </tr> <tr> <td align="center">14 inch<br> </td> <td align="center"> 15.7<br> </td> </tr> <tr> <td align="center"> 16 inch<br> </td> <td align="center"> 16.0<br> </td> </tr> </tbody> </table> <br> <a href="#index">Back to the index</a> <hr> <a name="sun"></a><big><b>Sun and planet &amp; moon data:</b></big><br> <br> <table cellspacing="0" cellpadding="4" border="1"> <tbody> <tr> <td><b>&nbsp;</b></td> <td><a href="http://nssdc.gsfc.nasa.gov/planetary/factsheet/mercuryfact.html">MERCURY</a> <br> </td> <td><a href="http://nssdc.gsfc.nasa.gov/planetary/factsheet/venusfact.html">VENUS</a> <br> </td> <td><a href="http://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html">EARTH</a> <br> </td> <td><a href="http://nssdc.gsfc.nasa.gov/planetary/factsheet/moonfact.html">MOON</a> <br> </td> <td><a href="http://nssdc.gsfc.nasa.gov/planetary/factsheet/marsfact.html">MARS</a> <br> </td> <td><a href="http://nssdc.gsfc.nasa.gov/planetary/factsheet/jupiterfact.html">JUPITER</a><br> </td> <td><a href="http://nssdc.gsfc.nasa.gov/planetary/factsheet/saturnfact.html">SATURN</a><br> </td> <td><a href="http://nssdc.gsfc.nasa.gov/planetary/factsheet/uranusfact.html">URANUS</a><br> </td> <td><a href="http://nssdc.gsfc.nasa.gov/planetary/factsheet/neptunefact.html">NEPTUNE</a> &nbsp;<br> </td> </tr> <tr> <td><a href="http://nssdc.gsfc.nasa.gov/planetary/factsheet/planetfact_notes.html#mass">Mass</a> 10<sup>24</sup>kg)</td> <td>0.330</td> <td>4.87</td> <td>5.97</td> <td>0.073</td> <td>0.642</td> <td>1898</td> <td>568</td> <td>86.8</td> <td>102</td> </tr> <tr> <td><a href="http://nssdc.gsfc.nasa.gov/planetary/factsheet/planetfact_notes.html#diam">Diameter</a>(km)</td> <td>4879</td> <td>12,104</td> <td>12,756</td> <td>3475</td> <td>6792</td> <td>142,984</td> <td>120,536</td> <td>51,118</td> <td>49,528</td> </tr> <tr> <td><a href="http://nssdc.gsfc.nasa.gov/planetary/factsheet/planetfact_notes.html#dens">Density</a> (kg/m<sup>3</sup>) </td> <td>5427</td> <td>5243</td> <td>5514</td> <td>3340</td> <td>3933</td> <td>1326</td> <td>687</td> <td>1271</td> <td>1638</td> </tr> <tr> <td><a href="http://nssdc.gsfc.nasa.gov/planetary/factsheet/planetfact_notes.html#grav">Gravity</a> (m/s<sup>2</sup>) </td> <td>3.7</td> <td>8.9</td> <td>9.8</td> <td>1.6</td> <td>3.7</td> <td>23.1</td> <td>9.0</td> <td>8.7</td> <td>11.0</td> </tr> <tr> <td><a href="http://nssdc.gsfc.nasa.gov/planetary/factsheet/planetfact_notes.html#escv">Escape Velocity</a> (km/s) </td> <td>4.3</td> <td>10.4</td> <td>11.2</td> <td>2.4</td> <td>5.0</td> <td>59.5</td> <td>35.5</td> <td>21.3</td> <td>23.5</td> </tr> <tr> <td><a href="http://nssdc.gsfc.nasa.gov/planetary/factsheet/planetfact_notes.html#rotp">Rotation Period</a> (hours) </td> <td>1407.6</td> <td>-5832.5</td> <td>23.9</td> <td>655.7</td> <td>24.6</td> <td>9.9</td> <td>10.7</td> <td>-17.2</td> <td>16.1</td> </tr> <tr> <td><a href="http://nssdc.gsfc.nasa.gov/planetary/factsheet/planetfact_notes.html#leng">Length of Day</a> (hours) </td> <td>4222.6</td> <td>2802.0</td> <td>24.0</td> <td>708.7</td> <td>24.7</td> <td>9.9</td> <td>10.7</td> <td>17.2</td> <td>16.1</td> </tr> <tr> <td><a href="http://nssdc.gsfc.nasa.gov/planetary/factsheet/planetfact_notes.html#dist">Distance from Sun</a> (10<sup>6</sup> km) </td> <td>57.9</td> <td>108.2</td> <td>149.6</td> <td>0.384*</td> <td>227.9</td> <td>778.6</td> <td>1433.5</td> <td>2872.5</td> <td>4495.1</td> </tr> <tr> <td><a href="http://nssdc.gsfc.nasa.gov/planetary/factsheet/planetfact_notes.html#peri">Perihelion</a> (10<sup>6</sup> km) </td> <td>46.0</td> <td>107.5</td> <td>147.1</td> <td>0.363*</td> <td>206.6</td> <td>740.5</td> <td>1352.6</td> <td>2741.3</td> <td>4444.5</td> </tr> <tr> <td><a href="http://nssdc.gsfc.nasa.gov/planetary/factsheet/planetfact_notes.html#peri">Aphelion</a> (10<sup>6</sup> km) </td> <td>69.8</td> <td>108.9</td> <td>152.1</td> <td>0.406*</td> <td>249.2</td> <td>816.6</td> <td>1514.5</td> <td>3003.6</td> <td>4545.7</td> </tr> <tr> <td><a href="http://nssdc.gsfc.nasa.gov/planetary/factsheet/planetfact_notes.html#orbp">Orbital Period</a> (days) </td> <td>88.0</td> <td>224.7</td> <td>365.2</td> <td>27.3</td> <td>687.0</td> <td>4331</td> <td>10,747</td> <td>30,589</td> <td>59,800</td> </tr> <tr> <td><a href="http://nssdc.gsfc.nasa.gov/planetary/factsheet/planetfact_notes.html#orbv">Orbital Velocity</a> (km/s) </td> <td>47.4</td> <td>35.0</td> <td>29.8</td> <td>1.0</td> <td>24.1</td> <td>13.1</td> <td>9.7</td> <td>6.8</td> <td>5.4</td> </tr> <tr> <td><a href="http://nssdc.gsfc.nasa.gov/planetary/factsheet/planetfact_notes.html#orbi">Orbital Inclination</a> (degrees)<br> </td> <td>7.0</td> <td>3.4</td> <td>0.0</td> <td>5.1</td> <td>1.9</td> <td>1.3</td> <td>2.5</td> <td>0.8</td> <td>1.8</td> </tr> <tr> <td><a href="http://nssdc.gsfc.nasa.gov/planetary/factsheet/planetfact_notes.html#orbe">Orbital Eccentricity</a> </td> <td>0.205</td> <td>0.007</td> <td>0.017</td> <td>0.055</td> <td>0.094</td> <td>0.049</td> <td>0.057</td> <td>0.046</td> <td>0.011</td> </tr> <tr> <td><a href="http://nssdc.gsfc.nasa.gov/planetary/factsheet/planetfact_notes.html#axit">Axial Tilt</a> (degrees) </td> <td>0.01</td> <td>177.4</td> <td>23.4</td> <td>6.7</td> <td>25.2</td> <td>3.1</td> <td>26.7</td> <td>97.8</td> <td>28.3</td> </tr> <tr> <td><a href="http://nssdc.gsfc.nasa.gov/planetary/factsheet/planetfact_notes.html#temp">Mean Temperature</a> (C) </td> <td>167</td> <td>464</td> <td>15</td> <td>-20</td> <td>-65</td> <td>-110</td> <td>-140</td> <td>-195</td> <td>-200</td> </tr> <tr> <td><a href="http://nssdc.gsfc.nasa.gov/planetary/factsheet/planetfact_notes.html#surp">Surface Pressure</a> (bars) </td> <td>0</td> <td>92</td> <td>1</td> <td>0</td> <td>0.01</td> <td>Unknown*</td> <td>Unknown*</td> <td>Unknown*</td> <td>Unknown*</td> </tr> <tr> <td><a href="http://nssdc.gsfc.nasa.gov/planetary/factsheet/planetfact_notes.html#sats">Number of Moons</a> </td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>2</td> <td>67</td> <td>62</td> <td>27</td> <td>14</td> </tr> <tr> <td><a href="http://nssdc.gsfc.nasa.gov/planetary/factsheet/planetfact_notes.html#ring">Ring System?</a> </td> <td>No</td> <td>No</td> <td>No</td> <td>No</td> <td>No</td> <td>Yes</td> <td>Yes</td> <td>Yes</td> <td>Yes</td> </tr> <tr> <td><a href="http://nssdc.gsfc.nasa.gov/planetary/factsheet/planetfact_notes.html#magf">Global Magnetic Field ?</a> </td> <td>Yes</td> <td>No</td> <td>Yes</td> <td>No</td> <td>No</td> <td>Yes</td> <td>Yes</td> <td>Yes</td> <td>Yes</td> </tr> <tr> <td><br> </td> <td><a href="http://nssdc.gsfc.nasa.gov/planetary/factsheet/mercuryfact.html">MERCURY</a> <br> </td> <td><a href="http://nssdc.gsfc.nasa.gov/planetary/factsheet/venusfact.html">VENUS</a> <br> </td> <td><a href="http://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html">EARTH</a><br> </td> <td><a href="http://nssdc.gsfc.nasa.gov/planetary/factsheet/moonfact.html">MOON</a><br> </td> <td><a href="http://nssdc.gsfc.nasa.gov/planetary/factsheet/marsfact.html">MARS</a><br> </td> <td><a href="http://nssdc.gsfc.nasa.gov/planetary/factsheet/jupiterfact.html">JUPITER</a><br> </td> <td><a href="http://nssdc.gsfc.nasa.gov/planetary/factsheet/saturnfact.html">SATURN</a><br> </td> <td><a href="http://nssdc.gsfc.nasa.gov/planetary/factsheet/uranusfact.html">URANUS</a> <br> </td> <td><a href="http://nssdc.gsfc.nasa.gov/planetary/factsheet/neptunefact.html">NEPTUNE</a> <br> </td> </tr> </tbody> </table> <br> Source and more information: <a href="http://nssdc.gsfc.nasa.gov/planetary/factsheet/">http://nssdc.gsfc.nasa.gov/planetary/factsheet/</a> <br> See also: <a href="https://en.wikipedia.org/wiki/Solar_System">https://en.wikipedia.org/wiki/Solar_System</a><br> <br> <a href="#index">Back to the index </a> <hr> <a name="comet"></a><big><b>Comet and asteroid (minor planet) ephemerides:</b></big><br> <br> <img src="hns_upda.png" style="margin-right: 8pt; float: left; max-width: 49%;"><br> The Comet and Asteroid routine use both an ASCII file which can be accessed and updated under the main menu "FILE" and then "COMET DATA EDITOR" or "ASTEROID DATA EDITOR", sub menu "TOOLS", option "UPDATE FROM INTERNET".<br clear="all"> <img src="hns_numi.png" style="margin-right: 8pt; margin-top: 12pt; float: left; max-width: 49%;"><br clear="all"> <br> A second and more convenient way are the update buttons in the menu "SETTINGS", tab UPDATE:<br> <br> The ephemerides of comets and asteroids (minor planets) are calculated on the basis of the two body problem. Light speed corrections will be applied, but perturbations by planets are not taken into account. This means that the orbital elements of comets and asteroids will be slowly influenced by the gravitational forces of the planets in our solar system. As a result the accuracy will drop slowly after a few months. You can download new ephemerides as mentioned above or for asteroids you can use the unique numerical integration routine inside HNSKY. <b>Background</b><br> Without perturbations, the orbit of a asteroid or minor planet around the Sun would follow an elliptical path around the Sun according Kepler. Such an orbit can be accurately defined by the six orbital elements: semi-major axis, eccentricity, inclination, longitude of the ascending node, argument (longitude) of the perihelion and the mean anomaly.<br> <br> Gravitational perturbations by the major planets continuously distort the ideal orbit and therefore change the orbital elements. After few months perturbations can be up to 20 arc seconds in the position.<br> <br> The masses and locations of the perturbating major planets are known, therefore the asteroid's change in speed and position can be accurately calculated by the numerical integration of acceleration/de-acceleration forces by the major planets. For any other epoch and therefore new position and speed, a corresponding set of orbital elements can be determined using the undisturbed Kepler equations.<br> <br> <b>Functionality</b>:<br> Select in the HNSKY editor a number of asteroids/minor planets and with right mouse button menu select "Numerical integration". Orbital element for the current epoch in HNSKY will be calculated. Save to make permanent. Accuracy will be better then 1" over at least 10 year time span. So in principle no download or update for orbital elements for the next 10 years required!<br> <br> <b>Limitations:</b><br> The program can handle comet and asteroid ASCII files to more the 16 Mbyte, but above 10.000 objects it will slow down.<br> <br> <b>The comet orbital element parameters:</b><br> <br> Here is an example of the orbital elements of the comet Halley in 1986:<br> <br> <font size="2" face="courier"> &nbsp;&nbsp;&nbsp;&nbsp;1986 2 9.43867 &nbsp;&nbsp;&nbsp;&nbsp;Time of perihelion [year month day.fraction]<br> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;0.5870992 &nbsp;&nbsp;Perihelion distance q in AU<br> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;0.9672725 &nbsp;&nbsp;Eccentricity e<br> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;162.23932 &nbsp;&nbsp;&nbsp;&nbsp;Inclination i [degrees]<br> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;58.14397 &nbsp;&nbsp;&nbsp;&nbsp;Longitude of the ascending node  [degrees]<br> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;111.84658 &nbsp;&nbsp;&nbsp;&nbsp;Argument of perihelion  [degrees]<br> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;1950.0 &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Equinox for the orbital elements [year]<br> </font> <br> T = The date of perihelion passage of the comet.<br> q = The distance of the comet from the Sun at the time of perihelion passage, in astronomical units (AU).<br> e = The eccentricity of the comet's orbit. An eccentricity of 0.0 means that the orbit is circular, whilst a value of 1.0 indicates a parabola. The majority of comets have an eccentricity between 0 and 1.<br>  = The argument of perihelion, in degrees.<br>  = The longitude of the ascending node of the orbit, in degrees.<br>  = The inclination of the orbit, in degrees.<br> <br> Comet magnitude Parameters:<br> <br> H = Is the absolute magnitude.<br> k = Is the activity factor which differs from one comet to another. In general k is a number between 5 and 15.<br> <br> The actual magnitude is calculated using the formula:<br> <br> mag = H + 5*log10(delta) + k*log10(r). k is also given as g where k:=2.5*g<br> <br> 'Delta' is the distance of the comet from the Earth (in astronomical units) and 'r' is the distance of the comet from the Sun (also in A.U.).<br> <br> <b>The asteroid orbital element parameters:</b><br> <br> T = The reference date of the mean anomaly. The date at which the asteroid has the mean anomaly specified by M<br> M = The mean anomaly of the asteroid at the reference date T, in degrees.<br> a = The semi-major axis of the orbit, in astronomical units (AU).<br> e = The eccentricity of the orbit.<br>  = The argument of perihelion, in degrees.<br>  = The longitude of the ascending node of the orbit, in degrees.<br>  = The inclination of the orbit, in degrees.<br> <br> Asteroid magnitude parameters:<br> <br> H = Is the absolute visual magnitude.<br> G = Is the slope parameter<br> <br> Comet and asteroid orbital elements are interchangeable. For number crunchers only: <a href="#conversion">conversion</a><br> The latest information of comets and minor planets can be downloaded from the Minor Planet Center (MPC) <a href="#webpages">Web page</a>. The official body that deals with astrometric observations and orbits of minor planets (asteroids) and comets. You can also import orbital elements for a single object from <a href="#jpl">JPL Horizons</a>.<br> <br> <a href="#index">Back to the index</a> <hr> <a name="jpl"></a><big><b>Importing orbital elements from JPL Horizons</b></big><br> <br> <a href="http://ssd.jpl.nasa.gov/horizons.cgi#top">http://ssd.jpl.nasa.gov/horizons.cgi#top</a><br> <br> 1) Use JPL Horizons to produce orbital elements in your browser. You get a pretty long output. Please select orbital elements and not Observer Table. Ephemeris Type [<a href="http://ssd.jpl.nasa.gov/horizons.cgi?s_type=1#top">change</a>]: <b>ELEMENTS)<br> </b> 2) Select and copy the complete output to the Windows clipboard or least all results.<br> 3) Open the asteroid editor. CTRL+8<br> 4) Use the special paste function (shift-V) and the converted elements will be pasted.<br> 5) Save if required.<br> <br> The following lines in the clipboard will do. The blue marked will be used, the rest will be ignored:<br> <pre><font size="3"> <font color="#00ff00">Target body name: 1 Ceres</font><font color="#c0c0c0"> {source: JPL#33}</font> <font color="#00ff00">H= 3.34</font> G= .120 <font color="#c0c0c0"> B-V= .713</font> <br><font color="#c0c0c0">$$SOE</font> <font color="#00ff00">2457327.500000000 = A.D.</font><font color="#c0c0c0">2015-Nov-01 00:00:00.0000 (TDB)</font> <font color="#00ff00">EC= 7.576057619437146E-02</font><font color="#c0c0c0"> QR= 2.558371829145914E+00 </font><font color="#00ff00">IN= 1.059187145670453E+01</font> <font color="#00ff00">OM= 8.032453115930886E+01 </font><font color="#00ff00">W = 7.269697384945518E+01 </font><font color="#c0c0c0">Tp= 2456552.783389225136</font> <font color="#c0c0c0">N = 2.140106134109005E-01 </font><font color="#00ff00">MA= 1.657975770915513E+02</font><font color="#c0c0c0"> TA= 1.677475739988772E+02</font> <font color="#00ff00">A = 2.768083424327017E+00 </font><font color="#c0c0c0">AD= 2.977795019508121E+00 PR= 1.682159563314740E+03</font> </font></pre> For the record, the following abbreviations are used in the JPL Horizons output: <pre><font size="3"> &nbsp;&nbsp;&nbsp;&nbsp;JDTDB Epoch Julian Date, Barycentric Dynamical Time &nbsp;&nbsp;&nbsp;&nbsp;EC Eccentricity, e &nbsp;&nbsp;&nbsp;&nbsp;QR Periapsis distance, q (AU) &nbsp;&nbsp;&nbsp;&nbsp;IN Inclination w.r.t xy-plane, i (degrees) &nbsp;&nbsp;&nbsp;&nbsp;OM Longitude of Ascending Node, OMEGA, (degrees) &nbsp;&nbsp;&nbsp;&nbsp;W Argument of Perifocus, w (degrees) &nbsp;&nbsp;&nbsp;&nbsp;Tp Time of periapsis (Julian day number) &nbsp;&nbsp;&nbsp;&nbsp;N Mean motion, n (degrees/day) &nbsp;&nbsp;&nbsp;&nbsp;MA Mean anomaly, M (degrees) &nbsp;&nbsp;&nbsp;&nbsp;TA True anomaly, nu (degrees) &nbsp;&nbsp;&nbsp;&nbsp;A Semi-major axis, a (AU) &nbsp;&nbsp;&nbsp;&nbsp;AD Apoapsis distance (AU) &nbsp;&nbsp;&nbsp;&nbsp;PR Sidereal orbit period (day) </font></pre> The same is possible for comets. Please remember to select: Ephemeris Type [<a href="http://ssd.jpl.nasa.gov/horizons.cgi?s_type=1#top">change</a>] : <b>ELEMENTS</b> <br>The following lines in the clipboard will do. The blue marked will be used, the rest will be ignored:<br> <br> <pre><font size="3"> <font size="3" color="#00ff00">Target body name: Catalina (C/2013 US1</font> {source: JPL#57}<br><font size="3" color="#00ff00">&nbsp;&nbsp;&nbsp;&nbsp;M1= 6.7 </font><font color="#c0c0c0">M2= n.a. </font><font color="#00ff00">k1= 8. </font><font color="#c0c0c0">k2= n.a. PHCOF= n.a.</font> <font size="3" color="#00ff00">&nbsp;&nbsp;&nbsp;&nbsp;$$SOE</font> <font size="3" color="#c0c0c0">&nbsp;&nbsp;&nbsp;&nbsp;2457391.500000000 = A.D. 2016-Jan-04 00:00:00.0000 (TDB)</font> <font size="3" color="#00ff00">&nbsp;&nbsp;&nbsp;&nbsp;EC= 1.000314643934860E+00 QR= 8.229767112374414E-01 IN= 1.488785130647946E+02</font> <font size="3" color="#00ff00">&nbsp;&nbsp;&nbsp;&nbsp;OM= 1.861449612321411E+02 W = 3.403593199515327E+02 Tp= 2457342.221695548855</font> <font size="3" color="#c0c0c0">&nbsp;&nbsp;&nbsp;&nbsp;N = 7.368037072713790E-06 MA= 3.630843740761026E-04 TA= 6.938859195917382E+01</font> <font size="3" color="#c0c0c0">&nbsp;&nbsp;&nbsp;&nbsp;A =-2.615581042755075E+03 AD= 6.684586453809735E+91 PR= 1.157407291666667E+95</font> </font></pre> <br> <a href="#index">Back to the index</a> <hr> <big><b>Comet and asteroid orbital elements are interchangeable.</b></big><br> <br> The <a href="https://en.wikipedia.org/wiki/Orbital_elements">orbital elements</a> consist of 6 quantities which completely define a circular, elliptic, parabolic or hyperbolic orbit. Of these six, three describe the shape and size of the orbit and the position of the object in the orbit and the other three (i,, ) define the orientation of the orbit in space.<br> <br> The first quantities are: <pre><font size="3"> &nbsp;&nbsp;&nbsp;&nbsp;a, Mean distance, or semi-major axis &nbsp;&nbsp;&nbsp;&nbsp;T0, Perihelion epoch/time, (or by an other Epoch T and M Mean anomoly) &nbsp;&nbsp;&nbsp;&nbsp;e, Eccentricity </font></pre> or <pre><font size="3"> &nbsp;&nbsp;&nbsp;&nbsp;q, Perihelion distance &nbsp;&nbsp;&nbsp;&nbsp;T0, Perihelion epoch &nbsp;&nbsp;&nbsp;&nbsp;e, Eccentricity </font></pre> Second three quantities are: <pre><font size="3"> &nbsp;&nbsp;&nbsp;&nbsp;i, Orbit inclination &nbsp;&nbsp;&nbsp;&nbsp;, Longitude of the ascending node &nbsp;&nbsp;&nbsp;&nbsp;, Argument of perihelion </font></pre> So orbital elements are typically given as: <pre><font size="3"> &nbsp;&nbsp;&nbsp;&nbsp;Comet q, T0 , e, i, ,  &nbsp;&nbsp;&nbsp;&nbsp;Asteroid a, M at Epoch, e, i, ,  </font></pre> The program uses one common routine for both comets and asteroids and selects an method of calculation (ellipse, parabola or hyperbola) based on eccentricity. Since comets have typically a parabolic orbit which have an infinite semi-major axis, the program first converts the asteroids elements semi major axis (a) and mean anomoly (M) at an Epoch to the perihelion date (T0) and the perihelion distance (q) typically used for comets as follows:<br> <pre><font size="3"> &nbsp;&nbsp;&nbsp;&nbsp;Asteroid Ceres(1) &nbsp;&nbsp;&nbsp;&nbsp;Epoch of elements : 1993 01 13.000 &nbsp;&nbsp;&nbsp;&nbsp;Eccentricity, (e): 0.0764401 &nbsp;&nbsp;&nbsp;&nbsp;Semi major axis, (a): 2.7678 &nbsp;&nbsp;&nbsp;&nbsp;Mean Anomaly, (M): 184.1845 </font></pre> Calculate the semi-major axis (q) as follows:<br> <br> q = a * ( 1 - e) = 2.5562291<br> <br> The mean anomaly (M) increases per day:<br> <br> n = k * (180/pi) /( a * squareroot( a ) ) = 0.21404378 [degrees /day]<br> <br>where k is the <a href="https://en.wikipedia.org/wiki/Gaussian_gravitational_constant">Gaussian gravitational constant</a>.<br> <br>The k factor is 0.01720209895 and can be calculated from our time unit (the day), the length unit (the astronomical unit) and the mass of our Sun.<br> <br>Then calculate the number of days till the mean anomaly reaches 360 degrees equals 0 degrees:<br> <br> (360-184.1845) / 0.21404378 = 819 days. The date of perihelion date passage (T0) is then 95-4-14<br> <br> <a href="#index">Back to the index</a> <hr> <a name="bayer"></a><big><b>Assigning of Greek letter to stars according Bayer.</b></big><br> <br> Activating Bayer designations in HNSKY:<br> <br> To activate Bayer designations, the menu function "Name all stars" in OBJECTS and "constellations" in SCREEN should be both on.<br> <br> Bayer system of star designations:<br> <br> In the year 1603, Bayer assigned to each constellation star a letter of the Greek alphabet, beginning usually with Alpha for the brightest, Beta for the second brightest, Gamma for the third, and so on till Omega. In a few cases however, as in the Ursa Major, order of position was used instead of order brightness. The Greek letter is followed by the name of the constellation written in the possessive or genitive form.<br> <br> Examples: Alpha Lyrae, Beta Cephei.<br> <br> Here is the Greek alphabet:<br> <br> <table width="250" cellspacing="0" cellpadding="4" border="1"> <tbody> <tr> <td align="center"><b>Letter</b></td> <td align="center"><b>Name</b></td> <td align="center"><b>Letter</b></td> <td align="center"><b>Name</b></td> </tr> <tr> <td align="center"><font color="#00ff00"><b> </b></font></td> <td align="center">alpha</td> <td align="center"><font color="#00ff00"><b> </b></font></td> <td align="center">nu </td> </tr> <tr> <td align="center"><font color="#00ff00"><b> </b></font></td> <td align="center">beta</td> <td align="center"><font color="#00ff00"><b> </b></font></td> <td align="center">xi</td> </tr> <tr> <td align="center"><font color="#00ff00"><b> </b></font></td> <td align="center">gamma</td> <td align="center"><font color="#00ff00"><b> </b></font></td> <td align="center">omicron</td> </tr> <tr> <td align="center"><font color="#00ff00"><b> </b></font></td> <td align="center">delta</td> <td align="center"><font color="#00ff00"><b> </b></font></td> <td align="center">pi</td> </tr> <tr> <td align="center"><font color="#00ff00"><b> </b></font></td> <td align="center">epsilon</td> <td align="center"><font color="#00ff00"><b> </b></font></td> <td align="center">rho</td> </tr> <tr> <td align="center"><font color="#00ff00"><b> </b></font></td> <td align="center">zeta</td> <td align="center"><font color="#00ff00"><b> /</b></font></td> <td align="center">sigma</td> </tr> <tr> <td align="center"><font color="#00ff00"><b> </b></font></td> <td align="center">eta</td> <td align="center"><font color="#00ff00"><b> </b></font></td> <td align="center">tau</td> </tr> <tr> <td align="center"><font color="#00ff00"><b> </b></font></td> <td align="center">theta</td> <td align="center"><font color="#00ff00"><b> </b></font></td> <td align="center">upsilon</td> </tr> <tr> <td align="center"><font color="#00ff00"><b> </b></font></td> <td align="center">iota</td> <td align="center"><font color="#00ff00"><b> </b></font></td> <td align="center">phi</td> </tr> <tr> <td align="center"><font color="#00ff00"><b> </b></font></td> <td align="center">kappa</td> <td align="center"><font color="#00ff00"><b> </b></font></td> <td align="center">chi</td> </tr> <tr> <td align="center"><font color="#00ff00"><b> </b></font></td> <td align="center">lambda</td> <td align="center"><font color="#00ff00"><b> </b></font></td> <td align="center">psi</td> </tr> <tr> <td align="center"><font color="#00ff00"><b> </b></font></td> <td align="center">mu</td> <td align="center"><font color="#00ff00"><b> </b></font></td> <td align="center">omega</td> </tr> </tbody> </table> <br> An other system devised by Flamsteed is using numbers. This is not supported by HNSKY. Examples: 23 Orionis, 89 Virginis.<br> <br> <a href="#index">Back to the index</a> <hr> <a name="abbreviations"></a><big><b>Abbreviations used for the visual deep sky description according Dreyer and others.</b></big><br> <br> The visual description of the deep sky objects used in <a href="">SAC</a> are from the <a href="#ngc">NGC</a>, some prominent amateurs, back issues of Deep Sky Magazine, Astronomy magazine, Sky and Telescope magazine and Burnham's Celestial Handbook. The descriptions are written down using the abbreviations from the NGC and Burnham's. HNSKY will in most cases translate/decode the abbreviations.<br> <br> <img src="hns_bar1.png" style="margin-right: 8pt; margin-top: 12pt; float: left; max-width: 49%;"><br clear="all"> <br> In some cases it will not be able to translate and will give the original abbreviation. The abbreviations used are given below:<br> <br> <table cellspacing="0" cellpadding="4" border="1"> <tbody> <tr> <td><b>!</b></td> <td>remarkable object</td> <td><b>!!</b></td> <td>very remarkable object</td> </tr> <tr> <td><b>am</b></td> <td>among</td> <td><b>n</b></td> <td>north</td> </tr> <tr> <td><b>att</b></td> <td>attached</td> <td><b>N</b></td> <td>nucleus</td> </tr> <tr> <td><b>bet</b></td> <td>between</td> <td><b>neb</b></td> <td>nebula, nebulosity</td> </tr> <tr> <td><b>B</b></td> <td>bright</td> <td><b>P w</b></td> <td>paired with</td> </tr> <tr> <td><b>b</b></td> <td>brighter</td> <td><b>p</b></td> <td>pretty (before F,B,L or S)</td> </tr> <tr> <td><b>C</b></td> <td>compressed</td> <td><b>p</b></td> <td>preceding</td> </tr> <tr> <td><b>c</b></td> <td>considerably</td> <td><b>P</b></td> <td>poor</td> </tr> <tr> <td><b>Cl</b></td> <td>cluster</td> <td><b>R</b></td> <td>round</td> </tr> <tr> <td><b>D</b></td> <td>double</td> <td><b>Ri</b></td> <td>rich</td> </tr> <tr> <td><b>def</b></td> <td>defined</td> <td><b>r</b></td> <td>not well resolved, mottled</td> </tr> <tr> <td><b>deg</b></td> <td>degrees</td> <td><b>rr</b></td> <td>partially resolved</td> </tr> <tr> <td><b>diam</b></td> <td>diameter</td> <td><b>rrr</b></td> <td>well resolved</td> </tr> <tr> <td><b>dif</b></td> <td>diffuse</td> <td><b>S</b></td> <td>small</td> </tr> <tr> <td><b>E</b></td> <td>elongated</td> <td><b>s</b></td> <td>suddenly</td> </tr> <tr> <td><b>e</b></td> <td>extremely</td> <td><b>s</b></td> <td>south</td> </tr> <tr> <td><b>er</b></td> <td>easily resolved</td> <td><b>sc</b></td> <td>scattered</td> </tr> <tr> <td><b>F</b></td> <td>faint</td> <td><b>susp</b></td> <td>suspected</td> </tr> <tr> <td><b>f</b></td> <td>following</td> <td><b>st</b></td> <td>star or stellar</td> </tr> <tr> <td><b>g</b></td> <td>gradually</td> <td><b>v</b></td> <td>very</td> </tr> <tr> <td><b>iF</b></td> <td>irregular figure</td> <td><b>var</b></td> <td>variable</td> </tr> <tr> <td><b>inv</b></td> <td>involved</td> <td><b>nf</b></td> <td>north following</td> </tr> <tr> <td><b>irr</b></td> <td>irregular</td> <td><b>np</b></td> <td>north preceding</td> </tr> <tr> <td><b>L</b></td> <td>large</td> <td><b>sf</b></td> <td>south following</td> </tr> <tr> <td><b>l</b></td> <td>little</td> <td><b>sp</b></td> <td>south preceding</td> </tr> <tr> <td><b>mag</b></td> <td>magnitude</td> <td><b>11m</b></td> <td>11th magnitude</td> </tr> <tr> <td><b>M</b></td> <td>middle</td> <td><b>8...</b></td> <td>8th magnitude and fainter</td> </tr> <tr> <td><b>m</b></td> <td>much</td> <td><b>9...13</b></td> <td>9th to 13th magnitude</td> </tr> </tbody> </table> <br> If you have never dealt with the NGC abbreviations before, perhaps a few examples will help<br> <br> <table width="750" cellspacing="0" cellpadding="4" border="1"> <tbody> <tr> <td align="center"><b>NGC</b></td> <td align="center"><b>Describtion</b></td> <td align="center"><b>Decoded descriptions</b></td> </tr> <tr> <td align="right">214</td> <td><b>pF,pS,lE,gvlbM</b></td> <td>Pretty faint, pretty small, little elongatedgradually very little brighter in the middle</td> </tr> <tr> <td align="right">708</td> <td><b>vF,vS,R<br></b></td> <td>Very faint, very small, round</td> </tr> <tr> <td align="right">891</td> <td><b>B,vL,vmE<br></b></td> <td>Bright, very large, very much elongated</td> </tr> <tr> <td align="right">7009</td> <td><b>!,vB,S</b></td> <td>Remarkable object, very bright, small</td> </tr> <tr> <td align="right">7089</td> <td><b>!!B,vL,mbMrrr,starsmags13.....</b></td> <td>Extremely remarkable object, bright, verylarge, much brighter middle, resolved,stars 13th magnitude and dimmer</td> </tr> <tr> <td align="right">2099</td> <td><b>!B,vRi,mC</b></td> <td>Remarkable object, bright, very rich, much compressed</td> </tr> <tr> <td align="right">6643</td> <td> <b>pB,pL,E50,2stp <b> </b></b></td> <td>Pretty bright, pretty large,elongated in position angle 50 degrees, two stars preceding</td> </tr> </tbody> </table> <br> <a href="#index">Back to the index</a> <hr> <br><big><b><a name="constellations"></a>Constellations short names and positions</b></big><br> <br> <table width="550" cellspacing="0" cellpadding="4" border="1"> <tbody> <tr> <td align="center"><b>Abbreviation</b></td> <td align="center"><b>Name</b></td> <td align="center"><b>Ra<br> [hours]</b></td> <td align="center"><b>Dec<br> [degrees]</b></td> <td align="center"><b>Genitive</b></td> </tr> <tr> <td>And,</td> <td>Andromeda</td> <td>1</td> <td>39</td> <td>Andromedae</td> </tr> <tr> <td>Ant,</td> <td>Antlia</td> <td>10</td> <td>-34</td> <td>Antliae</td> </tr> <tr> <td>Aps,</td> <td>Apus</td> <td>16</td> <td>-80</td> <td>Apodi</td> </tr> <tr> <td>Aqr,</td> <td>Aquarius</td> <td>23</td> <td>-11</td> <td>Aquarii</td> </tr> <tr> <td>Aql,</td> <td>Aquila</td> <td>20</td> <td>3</td> <td>Aquilae</td> </tr> <tr> <td>Ara,</td> <td>Ara</td> <td>17</td> <td>-52</td> <td>Arae</td> </tr> <tr> <td>Ari,</td> <td>Aries</td> <td>3</td> <td>23</td> <td>Arietis</td> </tr> <tr> <td>Aur,</td> <td>Auriga</td> <td>6</td> <td>42</td> <td>Aurigae</td> </tr> <tr> <td>Boo,</td> <td>Bootes</td> <td>15</td> <td>32</td> <td>Bootis</td> </tr> <tr> <td>Cae,</td> <td>Caelum</td> <td>5</td> <td>-39</td> <td>Caeili</td> </tr> <tr> <td>Cam,</td> <td>Camelopardalis</td> <td>6</td> <td>72</td> <td>Camelopardalis</td> </tr> <tr> <td>Cnc,</td> <td>Cancer</td> <td>8</td> <td>24</td> <td>Cancri</td> </tr> <tr> <td>CVn,</td> <td>Canes_Venatici</td> <td>13</td> <td>42</td> <td>Canum Venaticorum</td> </tr> <tr> <td>CMa,</td> <td>Canis_Major</td> <td>7</td> <td>-23</td> <td>CanisMajoris</td> </tr> <tr> <td>CMi,</td> <td>Canis_Minor</td> <td>8</td> <td>7</td> <td>CanisMinoris</td> </tr> <tr> <td>Cap,</td> <td>Capricornus</td> <td>21</td> <td>-20</td> <td>Capricorni</td> </tr> <tr> <td>Car,</td> <td>Carina</td> <td>8</td> <td>-57</td> <td>Cariane</td> </tr> <tr> <td>Cas,</td> <td>Cassiopeia</td> <td>1</td> <td>60</td> <td>Cassiopeiae</td> </tr> <tr> <td>Cen,</td> <td>Centaurus</td> <td>13</td> <td>-44</td> <td>Centauri</td> </tr> <tr> <td>Cep,</td> <td>Cepheus</td> <td>22</td> <td>73</td> <td>Cephei</td> </tr> <tr> <td>Cet,</td> <td>Cetus</td> <td>2</td> <td>-7</td> <td>Ceti</td> </tr> <tr> <td>Cha,</td> <td>Chamaeleon</td> <td>12</td> <td>-80</td> <td>Chameleontis</td> </tr> <tr> <td>Cir,</td> <td>Circinus</td> <td>15</td> <td>-68</td> <td>Circini</td> </tr> <tr> <td>Col,</td> <td>Columba</td> <td>6</td> <td>-37</td> <td>Columbae</td> </tr> <tr> <td>Com,</td> <td>Coma_Berenices</td> <td>13</td> <td>23</td> <td>Comae Berenices</td> </tr> <tr> <td>CrA,</td> <td>Corona_Australis</td> <td>19</td> <td>-41</td> <td>Coronae Australis</td> </tr> <tr> <td>CrB,</td> <td>Corona_Borealis</td> <td>16</td> <td>33</td> <td>Coronae Borealis</td> </tr> <tr> <td>Crv,</td> <td>Corvus</td> <td>12</td> <td>-18</td> <td>Corvi</td> </tr> <tr> <td>Crt,</td> <td>Crater</td> <td>11</td> <td>-13</td> <td>Crateris</td> </tr> <tr> <td>Cru,</td> <td>Crux</td> <td>13</td> <td>-61</td> <td>Crucis</td> </tr> <tr> <td>Cyg,</td> <td>Cygnus</td> <td>21</td> <td>50</td> <td>Cygni</td> </tr> <tr> <td>Del,</td> <td>Delphinus</td> <td>21</td> <td>12</td> <td>Delphini</td> </tr> <tr> <td>Dor,</td> <td>Dorado</td> <td>5</td> <td>-64</td> <td>Doradus</td> </tr> <tr> <td>Dra,</td> <td>Draco</td> <td>18</td> <td>66</td> <td>Draconis</td> </tr> <tr> <td>Equ,</td> <td>Equuleus</td> <td>21</td> <td>8</td> <td>Equulei</td> </tr> <tr> <td>Eri,</td> <td>Eridanus</td> <td>4</td> <td>-17</td> <td>Eridani</td> </tr> <tr> <td>For,</td> <td>Fornax</td> <td>3</td> <td>-27</td> <td>Fornacis</td> </tr> <tr> <td>Gem,</td> <td>Gemini</td> <td>7</td> <td>26</td> <td>Geminorum</td> </tr> <tr> <td>Gru,</td> <td>Grus</td> <td>22</td> <td>-46</td> <td>Gruis</td> </tr> <tr> <td>Her,</td> <td>Hercules</td> <td>17</td> <td>31</td> <td>Herculis</td> </tr> <tr> <td>Hor,</td> <td>Horologium</td> <td>3</td> <td>-52</td> <td>Horologii</td> </tr> <tr> <td>Hya,</td> <td>Hydra</td> <td>9</td> <td>-11</td> <td>Hydrae</td> </tr> <tr> <td>Hyi,</td> <td>Hydrus</td> <td>3</td> <td>-72</td> <td>Hydri</td> </tr> <tr> <td>Ind,</td> <td>Indus</td> <td>21</td> <td>-53</td> <td>Indi</td> </tr> <tr> <td>Lac,</td> <td>Lacerta</td> <td>23</td> <td>47</td> <td>Lacertae</td> </tr> <tr> <td>Leo,</td> <td>Leo</td> <td>11</td> <td>18</td> <td>Leonis</td> </tr> <tr> <td>LMi,</td> <td>Leo_Minor</td> <td>10</td> <td>33</td> <td>Leonis Minoris</td> </tr> <tr> <td>Lep,</td> <td>Lepus</td> <td>5</td> <td>-19</td> <td>Leporis</td> </tr> <tr> <td>Lib,</td> <td>Libra</td> <td>15</td> <td>-15</td> <td>Librae</td> </tr> <tr> <td>Lup,</td> <td>Lupus</td> <td>15</td> <td>-42</td> <td>Lupi</td> </tr> <tr> <td>Lyn,</td> <td>Lynx</td> <td>8</td> <td>48</td> <td>Lyncis</td> </tr> <tr> <td>Lyr,</td> <td>Lyra</td> <td>19</td> <td>41</td> <td>Lyrae</td> </tr> <tr> <td>Men,</td> <td>Mensa</td> <td>6</td> <td>-80</td> <td>Mensae</td> </tr> <tr> <td>Mic,</td> <td>Microscopium</td> <td>21</td> <td>-36</td> <td>Microscopii</td> </tr> <tr> <td>Mon,</td> <td>Monoceros</td> <td>7</td> <td>-5</td> <td>Monocerotis</td> </tr> <tr> <td>Mus,</td> <td>Musca</td> <td>12</td> <td>-70</td> <td>Muscae</td> </tr> <tr> <td>Nor,</td> <td>Norma</td> <td>16</td> <td>-52</td> <td>Normae</td> </tr> <tr> <td>Oct,</td> <td>Octans</td> <td>22</td> <td>-85</td> <td>Octantis</td> </tr> <tr> <td>Oph,</td> <td>Ophiuchus</td> <td>17</td> <td>-3</td> <td>Ophiuci</td> </tr> <tr> <td>Ori,</td> <td>Orion</td> <td>6</td> <td>5</td> <td>Orionis</td> </tr> <tr> <td>Pav,</td> <td>Pavo</td> <td>19</td> <td>-65</td> <td>Pavonis</td> </tr> <tr> <td>Peg,</td> <td>Pegasus</td> <td>23</td> <td>20</td> <td>Pegasi</td> </tr> <tr> <td>Per,</td> <td>Perseus</td> <td>4</td> <td>45</td> <td>Persei</td> </tr> <tr> <td>Phe,</td> <td>Phoenix</td> <td>1</td> <td>-48</td> <td>Phoenicis</td> </tr> <tr> <td>Pic,</td> <td>Pictor</td> <td>5</td> <td>-52</td> <td>Pictoris</td> </tr> <tr> <td>Psc,</td> <td>Pisces</td> <td>1</td> <td>15</td> <td>Piscium</td> </tr> <tr> <td>PsA,</td> <td>Piscis_Austrinus</td> <td>22</td> <td>-31</td> <td>Piscis Austrini</td> </tr> <tr> <td>Pup,</td> <td>Puppis</td> <td>8</td> <td>-32</td> <td>Puppis</td> </tr> <tr> <td>Pyx,</td> <td>Pyxis</td> <td>9</td> <td>-29</td> <td>Pyxidis</td> </tr> <tr> <td>Ret,</td> <td>Reticulum</td> <td>4</td> <td>-60</td> <td>Reticuli</td> </tr> <tr> <td>Sge,</td> <td>Sagitta</td> <td>20</td> <td>17</td> <td>Sagittae</td> </tr> <tr> <td>Sgr,</td> <td>Sagittarius</td> <td>19</td> <td>-29</td> <td>Sagittarii</td> </tr> <tr> <td>Sco,</td> <td>Scorpius</td> <td>17</td> <td>-36</td> <td>Scorpii</td> </tr> <tr> <td>Scl,</td> <td>Sculptor</td> <td>0</td> <td>-35</td> <td>Sculptoris</td> </tr> <tr> <td>Sct,</td> <td>Scutum</td> <td>19</td> <td>-10</td> <td>Scuti</td> </tr> <tr> <td>Ser,</td> <td>Serpens_Caput</td> <td>16</td> <td>11</td> <td>Serpentis</td> </tr> <tr> <td>Ser,</td> <td>Serpens_Cauda</td> <td>18</td> <td>-14</td> <td>Serpentis</td> </tr> <tr> <td>Sex,</td> <td>Sextans</td> <td>10</td> <td>-2</td> <td>Sextantis</td> </tr> <tr> <td>Tau,</td> <td>Taurus</td> <td>4</td> <td>17</td> <td>Tauri</td> </tr> <tr> <td>Tel,</td> <td>Telescopium</td> <td>19</td> <td>-52</td> <td>Telescopii</td> </tr> <tr> <td>Tri,</td> <td>Triangulum</td> <td>2</td> <td>32</td> <td>Trianguli</td> </tr> <tr> <td>TrA,</td> <td>Triangulum_Australe</td> <td>16</td> <td>-66</td> <td>Trianguli Australis</td> </tr> <tr> <td>Tuc,</td> <td>Tucana</td> <td>24</td> <td>-64</td> <td>Tucanae</td> </tr> <tr> <td>UMa,</td> <td>Ursa_Major</td> <td>10</td> <td>57</td> <td>Ursae Majoris</td> </tr> <tr> <td>UMi,</td> <td>Ursa_Minor</td> <td>15</td> <td>76</td> <td>Ursae Minoris</td> </tr> <tr> <td>Vel,</td> <td>Vela</td> <td>9</td> <td>-49</td> <td>Velorum</td> </tr> <tr> <td>Vir,</td> <td>Virgo</td> <td>13</td> <td>-3</td> <td>Virginis</td> </tr> <tr> <td>Vol,</td> <td>Volans</td> <td>8</td> <td>-69</td> <td>Volantis</td> </tr> <tr> <td>Vul,</td> <td>Vulpecula</td> <td>20</td> <td>25</td> <td>Vulpeculae</td> </tr> </tbody> </table> <br> <a href="#index">Back to the index</a> <hr> <a name="credits"></a><big><b>Thanks:</b></big><br> <br> 1) The members of the Saguaro Astronomy Club (pronounced sa-war-oh) of Phoenix. Who compiled the: SAC DEEP SKY DATABASE VERSION 8.1.. The original SAC, SAO or PPM files (not in HNSKY format) are available at <a href="http://www.saguaroastro.org/content/downloads.htm">www.saguaroastro.org/content/downloads.htm</a><br> <br> 2) Wolfgang Steinicke's for his monumental work, correcting the NGC &amp;IC. <a href="http://www.klima-luft.de/steinicke/index_e.htm">http://www.klima-luft.de/steinicke/index_e.htm</a><br> <br> 3) Writers O. Montenbruck and T. Pfleger for their book and diskette "Astronomy on the Personal Computer" English edition 1998 (Almost equal to 1993 edition).<br> <br> 4) The Smithsonian Astrophysical Observatory for their SAO star catalog of 258997 stars.<br> <br> 5) U. Bastian and S. Roeser (Astronomisches Rechen-Institut, Heidelberg) who compiled the Catalogue of Positions and Proper Motions (PPM).<br> <br> 6) USNO for the UCAC4.<br> <br> 7) ESA for the Tycho and Gaia catalog.<br> <br> 8) The organizations and many people behind:<br> http://simbad.u-strasbg.fr<br> http://archive.eso.org/<br> http://skyview.gsfc.nasa.gov<br> <br> 9) And finally some more books which where very useful:<br> <ul> <li> The astronomical companion by Guy Ottewell. Very compact but full of (technical) information to understand, enjoyment, as a reference and as a none mathematical course in astronomy. Fourteenth printing 1995. </li> <li> Astronomical formulae for calculators by Jean Meeus. Edition 1988</li> <li> Astronomical algorithms by Jean Meeus. Edition 1991 </li> </ul> <a href="#index">Back to the index</a> <hr> <a name="jpl_de"></a><big><b>Jet Propulsion Laboratory Development Ephemeris.</b></big><br> <br> <b><u>Info:</u></b> <br> Use in HNSKY: <a href="#settings_jpl_de">Menu SETTINGS, topic JPL DE</a><br> Info Wikipedia: <a href="https://en.wikipedia.org/wiki/Jet_Propulsion_Laboratory_Development_Ephemeris">https://en.wikipedia.org/wiki/Jet_Propulsion_Laboratory_Development_Ephemeris</a><br> <br><b><u>Download:</u></b> <br>Only required if you want the very best accuracy for occultations or want planetary positions outside the 1750-2250 range of the internal solution.<br> <br> Move mouse to one of the links below and with right mouse button and select SAVE LINK AS... This will download the file. Only one file is sufficient. You place the file either in the program folder typically <b>\Program files\hnsky</b> or at the document folder <b>Documents\hnsky</b> Select the correct JPL_DE folder in HNSKY menu SETTINGS by double click on the path and browse to the file. It is working if the capital letters DE are shown in the (blue) title bar of HNSKY. If your outside the time range, the letters DE will disappear. The program will use then the default internal solution and give a warning message at the status bar.<br> <br>DE430, range year 2000 up to 2050 ( 5 mbytes):<br> <a class="moz-txt-link-freetext" href="http://www.hnsky.org/lnxp2000p2050.430">www.hnsky.org/lnxp2000p2050.430</a><br> <br> DE430, range year 1550 up to 2650 (100 mbytes)<br> <a class="moz-txt-link-freetext" href="ftp://ssd.jpl.nasa.gov/pub/eph/planets/Linux/de430/linux_p1550p2650.430"> ftp://ssd.jpl.nasa.gov/pub/eph/planets/Linux/de430/linux_p1550p2650.430</a><br> <br> DE431, range year -13000 up to +16999 (2800 mbytes!!)<br> <a class="moz-txt-link-freetext" href="ftp://ssd.jpl.nasa.gov/pub/eph/planets/Linux/de431/lnxm13000p17000.431"> ftp://ssd.jpl.nasa.gov/pub/eph/planets/Linux/de431/lnxm13000p17000.431</a><br> <br> <a href="#index">Back to the index</a> <hr> <a name="webpages"></a><big><b>Web page of HNSKY, CDS and others.</b></big><br> <br> HNSKY or "Hallo northern sky" homepage. Here you can download the latest version of HNSKY: <a href="http://www.hnsky.org/software.htm"> http://www.hnsky.org/software.htm</a><br> <br> The ASCOM telescope driver: <a href="http://ascom-standards.org/">http://ascom-standards.org/</a><br> <br> HNSKY comet and asteroid file updates. Updating is integrated in the program.You could fownload them manually from: orbital elements in formats suitable for loading into a variety of planetarium-type computer programs", download the data in "TheSky" format from: <a href="http://cfa-www.harvard.edu/iau/Ephemerides/">http://cfa-www.harvard.edu/iau/Ephemerides/</a> Then copy and paste the data into the original files.<br> <br> SAGUARO ASTRONOMY CLUB containing deep sky database SAC8.1: <a href="http://www.saguaroastro.org/">http://www.saguaroastro.org/</a><br> <br> ASP web site: <a href="http://www.aspsky.org">http://www.aspsky.org</a><br> <br> <a href="http://cdsweb.u-strasbg.fr/">Centre de Donnes astronomiques de Strasbourg</a><br> <br> Simbad astronomical database: <a href="http://simbad.u-strasbg.fr/simbad/">http://simbad.u-strasbg.fr/simbad/</a><br> <br> To download <a href="#gsc">GSC</a> 1.2 from internet (291 Mbytes): <a href="ftp://cdsarc.u-strasbg.fr/cats/I/254/GSC/">ftp://cdsarc.u-strasbg.fr/cats/I/254/GSC/</a><br> <br> To download GSC ACT from internet (291 Mbytes): <a href="ftp://cdsarc.u-strasbg.fr/cats/I/255/GSC_ACT/">ftp://cdsarc.u-strasbg.fr/cats/I/255/GSC_ACT/</a><br> <br> To download <a href="#ucac4">UCAC4</a> from internet (8.5 Gbytes): <a href="ftp://cdsarc.u-strasbg.fr/cats/I/322A/sc/">ftp://cdsarc.u-strasbg.fr/cats/I/322A/sc/</a><br> <br> TDT-UT estimates: <a href="http://eclipse.gsfc.nasa.gov/SEhelp/deltaT.html">http://eclipse.gsfc.nasa.gov/SEhelp/deltaT.html</a><br> <br> <a href="#index">Back to the index</a> <hr> </span></body></html>